
Abstract
Using multi-temporal European Remote-sensing Satellites
(ERS-1/-2) and Canadian Radar Satellite (RADARSAT-1) syn-
thetic aperture radar (SAR) data over the Louisiana coastal
zone, we characterize seasonal variations of radar backscat-
tering according to vegetation type. Our main findings are as
follows. First, ERS-1/-2 and RADARSAT-1 require careful
radiometric calibration to perform multi-temporal backscat-
tering analysis for wetland mapping. We use SAR backscat-
tering signals from cities for the relative calibration. Second,
using seasonally averaged backscattering coefficients from
ERS-1/-2 and RADARSAT-1, we can differentiate most forests
(bottomland and swamp forests) and marshes (freshwater,
intermediate, brackish, and saline marshes) in coastal
wetlands. The student t-test results support the usefulness of
season-averaged backscatter data for classification. Third,
combining SAR backscattering coefficients and an optical-
sensor-based normalized difference vegetation index can
provide further insight into vegetation type and enhance the
separation between forests and marshes. Our study demon-
strates that SAR can provide necessary information to
characterize coastal wetlands and monitor their changes.

Introduction
Coastal wetlands constitute important ecosystems in terms
of flood control, water and nutrient storage, habitat for fish
and wildlife reproduction and nursery activities, and overall
support of the food chain (Karszenbaum et al., 2000). The
integrity of such wetlands has significant ecologic and
economic implications. Louisiana has one of the largest
expanses of coastal wetlands in the conterminous United
States, and its coastal wetlands contain an extraordinary
diversity of habitats. The unique habitats of upland areas
and the Gulf of Mexico, complex hydrological connections,
and migratory routes of birds, fish, and other species place
the coastal wetlands of Louisiana among the nation’s most
productive and important natural assets (USACOE, 2004).

However, the balance of Louisiana’s coastal systems has
been upset by a combination of natural processes and
human activities. Massive coastal erosion probably started
around 1890, and more than one million acres or about
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20 percent of the coastal lowlands (mostly wetlands) have
eroded in the past 100 years (LCWCRTF/WCRA, 1998). For
example, the loss rate for Louisiana’s coastal wetlands was
as high as 25,200 and 15,300 acres per year in 1970s and
1990s, respectively (Barras et al., 2003). Massive environ-
mental changes have significant impacts on the coastal
ecosystem of Louisiana, including effects from frequent
natural disasters such as the Hurricane Katrina in 2005.
Therefore, an effective method of mapping and monitoring
coastal wetlands is essential to understanding the status and
influence of environmental changes and human activities on
wetlands.

Optical satellite images such as those from Landsat
Thematic Mapper (TM) and Enhanced Thematic Mapper Plus
(ETM�) have been used to map coastal wetlands (Homer et
al., 2004; Loveland and Shaw, 1996). For example, National
Land-cover Data 1992 was created from Landsat TM data; the
producer’s accuracy for wetlands over the southeastern
region of the United States was assessed at 46 � 77 percent
(Stehman et al., 2003). A unique characteristic of synthetic
aperture radar (SAR) in monitoring wetlands over cloud-
prone subtropical regions is the all-weather and day-and-
night imaging capability. In addition, SAR can provide key
descriptors for a wetland environment, such as ground
vegetation structure, inundation, topographic features, and
moisture content (Sadre et al., 1995).

Waite and MacDonald (1971) first reported that flooded
forests in “leaf off” conditions in Arkansas showed up as
anomalously bright areas on K-band radar images. Since
then, several studies have demonstrated that satellite SAR
can map and monitor forested and non-forested wetlands
occupying a range of coastal and inland settings (Ramsey III,
1998 and 1999; Ramsey III et al., 2006). Many of those
studies relied on the fact that when standing water is
present beneath the vegetation canopies, the radar backscat-
tering signal changes with water level changes, depending
on vegetation type and structure. Therefore, they used SAR
backscattering signals to monitor floods and dry conditions,
temporal variations in the hydrological conditions of
wetlands, including classification of wetland vegetation at
various study sites (Baghdadi et al., 2001; Bourgeau-Chavez
et al., 2001; Bourgeau-Chavez et al., 2005; Costa, 2004; Costa
et al., 2002; Grings et al., 2006; Hess and Melack, 1994; Hess
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et al., 1995; Horritt et al., 2003; Karszenbaum et al., 2000;
Kasischke and Bourgeau-Chavez, 1997; Kiage et al., 2005; Le
Toan et al., 1997; Lu et al., 2005; Ramsey III, 1995; Simard
et al., 2002; Townsend, 2002). Previous studies using
satellite SAR imagery over coastal Louisiana were focused on
flood detection in wetland and urban areas with a limited
number of scenes (Kiage et al., 2005; Russell et al., 2005).

The primary objective of our study is to derive robust
indicators, which are based on multiple temporal SAR images
from two different sensors, to differentiate vegetation types
over coastal wetlands. We use SAR data acquired from two
sensors during several consecutive years to assess the poten-
tial of C-band SAR imagery for characterizing and monitoring
wetland vegetation in a coastal flood zone. The multi-
temporal SAR data from European Remote-sensing Satellites
(ERS-1/-2) and Canadian Radar Satellite (RADARSAT-1) were
acquired during both leaf-on and leaf-off seasons to allow the
study of temporal variation of SAR backscattering. The multi-
temporal data sets also help us overcome temporary environ-
mental effects to provide robust results. We first demonstrate
the necessity of relative calibration of SAR backscattering
signals prior to inferring the relationship between SAR returns
and wetland types. We then investigate how radar backscat-
tering signals from different vegetation classes vary with time
and whether those vegetation classes have distinguishable
radar backscattering signatures. Our goal is to infer the
vegetation structure from calibrated SAR backscattering

returns. Finally, we evaluate the relationship between radar
backscattering coefficients and normalized difference vegeta-
tion indices derived from optical images to provide additional
information to differentiate wetland classes.

Study Site
Coastal Louisiana is made up of two wetland-dominated
ecosystems: the Deltaic Plain of the Mississippi River (eastern
region) and the Chenier Plain (western region). Our study
area covers the Barataria, Terrebonne, and Atchafalaya River
Basins and the Teche/Vermilion Basin within the Deltaic
Plain (Plate 1). We combine the land-cover classification map
from the Louisiana Gap Analysis Program (GAP) (USGS-
NWRC, 1998) and the land-cover map by Barras et al. (1994)
as the base map for land-cover types. We focus on nine major
land-cover types: bottomland forest, swamp forest, freshwater
marsh, intermediate marsh, brackish marsh, saline marsh,
open water, agriculture, and urban (Plate 1). A good descrip-
tion of different types of vegetation in the study area can be
found at http://la.water.usgs.gov/nawqa/ecology.htm and
http://plants.ifas.ufl.edu/photocat.html. Typical plants and
salinity concentration, according to LCWCRTF/WCRA (1998)
within each wetland class are listed in Table 1.

Agriculture and urban land-cover types are found in
relatively high elevation areas along the well-established
access roads (Plate 1). Sugarcane, soybean, and forage

Plate 1. Modified GAP land-cover map of southeastern Louisiana. Polygons represent the coverage of
ERS and RADARSAT-1 SAR images.
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TABLE 1. VEGETATION CLASSES AND TYPICAL PLANTS OVER COASTAL SOUTHEASTERN LOUISIANA 1

Vegetation Classes Typical Plants Salinity

Bottomland forests American elm (Ulmus americana) N/A
Sweetgum (Liquidambar styraciflua)
Sugarberry (Celtis laevigata)
Swamp red maple (Acer rubrum var. drummondii)

Swamp forests Bald cypress (Taxodium distichum) 0 � 1 ppt2

Water tupelo (Nyssa aquatica)

Freshwater marshes Maidencane (Panicum hemitomon) 0 � 3 ppt
Spikerush (Eleocharis sp.)
Bulltongue (Sagittaria falcata)

Intermediate marshes Bulltongue (Sagittaria falcata) 2 � 5 ppt
Saltmeadow cordgrass or wire grass (Spartina patens)

Brackish marshes Saltmeadow cordgrass or wire grass (Spartina patens) 4 � 15 ppt
Three-square bulrush (Scirpus americana)

Saline marshes Smooth cordgrass or oyster grass (Spartina alterniflora) 12 ppt and higher
Saltgrass (Distichlis spicata)

1. Modified from (LCWCRTF/WCRA, 1998)
2. Parts-per-thousand

TABLE 2. SAR S ENSOR CHARACTERISTICS : S ENSOR , B EAM MODE, O RBIT DIRECTION , I NCIDENCE ANGLE

Satellite Image Acquisition Dates (year: mm/dd)

ERS-1 (C-VV) 1992: 06/11, 07/16, 08/20, 09/24, 10/29
Orbit pass: Descending 1993: 01/07, 04/22, 09/09
Incidence angle at scene center: 23.3° 1995: 11/11

1996: 01/20, 05/04 (11 scenes)

ERS-2 (C-VV) 1995: 11/12, 12/17
Orbit pass: Descending 1996: 01/21, 05/05, 06/09, 07/14, 08/18, 09/22, 10/27, 12/01
Polarization: C-VV 1997: 01/05, 03/16, 05/25, 09/07, 10/12, 11/16
Incidence angle: 23.3° 1998: 01/25, 03/01, 04/05, 07/19, 08/23, 09/27 (22 scenes)

RADARSAT-1 (C-HH) 2002: 05/03, 05/27, 06/20, 07/14, 08/07, 08/31, 11/11
Orbit pass: Ascending 2003: 02/15, 05/22, 06/15, 07/09, 08/02, 10/12, 12/23
Incidence angle: 27.7° 2004: 02/09, 03/28, 04/21, 07/02, 09/12 (19 scenes)

constitute the primary agriculture classes (Chabreck, 1972;
LCWCRTF/WCRA, 1998). Bottomland forests represent a
transition between drier upland hardwood forest and very
wet river floodplain and wetland forests (Plate 1). Bottom-
land forests are intermittently inundated (IFAS, 2006).
Swamp forests are found in the lowest elevation areas and
are inundated most of the time (IFAS, 2006). Swamp forest
in Louisiana is mostly comprised of bald cypress and water
tupelo, and the salinity of the flooded water ranges from
0 � 1 parts-per-thousand (ppt). The plants that live in
swamp forests have adapted to tolerate high water levels.

The freshwater marsh community is comprised largely
of floating marshes (Plate 1). Maidencane, spikerush, and
bulltongue comprise the dominant species. Freshwater
marshes have the greatest plant diversity and the highest
soil organic matter content of any marsh type over the study
area (Chabreck, 1972). However, plant diversity varies with
location, and many areas of monotypic marshes can be
found in the Louisiana coastal zone (E. Ramsey, personal
communication, 2007). The salinity of freshwater marsh
ranges 0 � 3 ppt (LCWCRTF/WCRA, 1998; Nelson et al.,
2002).

With a salinity level of 2 � 5 ppt, intermediate marshes
represent a zone of mild salt content, which results in
fewer plant species than freshwater marsh (Chabreck, 1972)
(Plate 1). The intermediate marsh can be characterized as
plant species common to freshwater marsh but with saltier
versions of them toward the sea. Intermediate marsh is
largely composed of bulltongue and saltmeadow cordgrass

(LCWCRTF/WCRA, 1998). The latter, also called wire grass,
is not found in freshwater marsh (Barras et al., 2006).

Brackish marshes have salinity of 4 � 15 ppt and are
irregularly flooded by tide (Plate 1); they are largely com-
posed of wire grass and three-square bullrush. This marsh
community can be described as marshes that are virtually all
wire grass, i.e., clusters of three-foot-long grass-like leaves,
with little variation in plant species (Barras et al., 2006).

The saline marsh community has the largest saline
concentration (12 ppt and higher) (LCWCRTF/WCRA, 1998)
(Plate 1). With the least diversity of vegetation species,
saline marsh is largely composed of smooth cordgrass, oyster
grass, and saltgrass.

The hydrologic status of marsh areas is such that
freshwater marshes occur in relatively low energy environ-
ments and may be subject to tidal changes, but not ebb and
flow. They change slowly and have thick sequences of
organic soils or floating grass root mats. Saline and brackish
marshes are found in high energy areas and are subject to
the ebb and flow of the tides (LCWCRTF/WCRA, 1998).

Data and Pr ocessing
SAR Data
In this study, ERS-1 (11 scenes) and ERS-2 (22 scenes) data
between 1992 and 1998, and RADARSAT-1 (19 scenes) data
from 2002 to 2004 are used for backscattering analysis
(Table 2). ERS data were acquired during descending

607-617_07-097.qxd  4/16/09  9:14 PM  Page 609



610 May  2009 PHOTOGRAMMETRIC ENGINEER ING & REMOTE SENS ING

passes and RADARSAT-1 data during ascending passes. The
spatial coverage of both ERS and RADARSAT-1 scenes is
shown in Plate 1.

As precipitation can affect the moisture content of
vegetation and soil that control the SAR backscattering
returns (Lu and Meyer, 2002), we checked the precipitation
information at the SAR image acquisition dates. During the
RADARSAT-1 image acquisitions (2002 � 2004), the precipita-
tion records at four weather stations over our study region
were available. During 1992 through 1999 when ERS-1/-2
images were acquired, only one weather station maintained
the precipitation information. Our regression analyses
between the amount of precipitation and the SAR backscatter
signal did not reveal any meaningful correlation. Conserva-
tively, however, we excluded all scenes when the precipita-
tion was more than one inch/day.

SAR raw data are processed into single-look complex (SLC)
images with antenna pattern compensation. The intensity of
the SLC image in converted into the backscattering coefficient,
s° according to Wegmüller and Werner (2003). The topogra-
phy of Southern Louisiana is almost flat; therefore, additional
adjustment of s° for local terrain slope effect is not necessary.

ERS-1 and ERS-2 SLC images are co-registered to a com-
mon reference image using a two-dimensional sinc function
(Wegmüller and Werner, 2003). ERS-2 orbit 7452, acquired
on 22 September 1996 is the reference image used to mini-
mize baseline diversity. The co-registered SLC images are
multi-looked using a 2 � 10 window to represent a ground-
projected pixel size of about 40 m � 40 m. The same
procedure is used to process RADARSAT-1 data. All SLC
images are co-registered to a common reference image (orbit
40409, acquired on 02 August 2003); the co-registered data

are multi-looked with a 3 � 10 window to represent a
ground-projected pixel size of approximately 53 m � 53 m.
Speckle noise in the images is suppressed using the Frost
adaptive despeckle filter (Frost et al., 1982) with a 3 � 3
window size on the co-registered and multi-looked images.
Finally, SAR images are geo-referenced and co-registered
with the modified GAP land-cover map.

SAR Data Calibration
We have selected many data samples across the study area
to examine seasonal variation of s° for different vegetation
types. Locations of data samples are shown in Figure 1. For
each of the nine land-cover classes, between three and nine
locations distributed across the study area have been chosen
for backscattering analysis. The 2004 Digital Orthophoto
Quarter Quadrangle (DOQQ) imagery for Louisiana (USGS-
NWRC, 2005) is used to verify the land-cover type over the
sampling sites. The size of sampling boxes varies between
3 � 3 pixels and 41 � 41 pixels, so that each box may cover
only a single land-cover type. The DOQQ imagery is also
used to ensure the homogeneity of samples at each site.

The results of average s° for each class are shown in
Figure 2. The overall difference in the average s° between
Figure 2a and 2b is due to differences in sensors and environ-
mental changes. The s°ERS shows a generally downward
degrading trend (Figure 2a). This long-term declination is
present for all land-cover classes, suggesting ERS-2 has a
temporal decrease of antenna power. Meadows et al. (2004)
reported that, since the launch in 1995 until the end of 2000,
ERS-2 antenna transmission degraded at the rate of 0.66 dB
per year. Therefore, we compensated for this long-term
declination of s° before further analysis.

Figure 1. Averaged SAR intensity image mosaic with locations of data sample sites.

607-617_07-097.qxd  4/16/09  9:15 PM  Page 610



PHOTOGRAMMETRIC ENGINEER ING & REMOTE SENS ING May  2009 611

Figure 2. Temporal variations of radar backscattering
coefficient from (a) ERS-1/-2 , and (b) RADARSAT-1 . (Note:
AG is agricultural field, SF is swamp forest, BF is
bottomland forest, FM is freshwater marsh, IM is
intermediate marsh, BM is brackish marsh, SM is saline
marsh, and W is open water). A color version of this
figure is available at the ASPRS website: www.asprs.org.

Figure 3. Temporal variations of radar backscattering
coefficient over cities from (a) ERS -1/-2 , and(b) RADARSAT-1 .
A color version of this figure is available at the ASPRS
website: www.asprs.org .

Unlike ERS, s°RADARSAT exhibits strong temporal varia-
tion for all land-cover types (Figure 2b). We find that
s°RADARSAT over water mimics the variation of s° over
other land classes. This strongly suggests that the temporal
variation in RADARSAT-1 is caused not only by changes in
environmental conditions but also by some systematic
changes that we do not understand. They need to be
removed prior to any further analysis of s°.

Extensive homogeneous surfaces with known backscat-
tering characteristics, such as Amazon forests or carefully
designed corner reflectors, are ideal for radiometric calibra-
tion, but no such locations exist in our study site. However,
many artificial structures and objects in cities, such as

buildings, roads, and industrial facilities may be considered
corner-reflector complex and behave like permanent scatter-
ers whose backscattering characteristics do not change with
time despite environmental variation (Ferretti et al., 2001).
Under ideal conditions, backscattering coefficients from
urban areas should remain almost constant over time, and
therefore they can be used as an alternative to calibrate
time-varying radar backscattering characteristics.

Most of the cities in coastal Louisiana are mixed with
vegetation, implying that the radar backscattering from these
areas can be affected by vegetation responses. Figure 3 shows
temporal variation of the s° mean from six cities for ERS data
and five cities for RADARSAT-1 data. The variation of s° from
Morgan City is quite different from the rest of the cities.
Inspecting high-resolution DOQQ images over these cities
suggests that Morgan City has the largest percentage of vegeta-
tion coverage. Therefore, we interpret the low s°ERS and
s°RADARSAT of Morgan City as due to the effect of urban vege-
tation on radar backscattering return. In addition, Humphries
shows anomalous backscattering changes in 1996 and 1997.
Therefore, for each SAR image, s°s from the remaining cities
are averaged to obtain the mean backscattering coefficient
of urban areas (Figure 3). The large difference between Norco
and the rest of cities in ERS data (Figure 3a) is probably
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Plate 2. Seasonally averaged (a) ERS -1/-2 , and
(b) RADARSAT-1 radar backscattering coefficients ( s°) of
each land-cover type during leaf-on and leaf-off seasons.
Relative calibration is done with the averaged  s° of urban
areas; (c) Multi-year seasonally averaged  s° values and
their standard deviations of each land-cover type.

because fully developed industrial facilities and urban
infrastructure in Norco are aligned more favorably for double-
bounce returns than other cities. However, variation of s°
over Norco follows a similar trend of s° for other cities.

Because temporal variation of backscattering coefficients
over urban areas is very similar, we assume that the cause of
the systematic variation affects not only the city areas but
also the whole study region in the same manner. Therefore,
relative calibration with s° over urban areas compensates
these systematic patterns of s° for the rest of the land-cover
types. Accordingly, for each SAR scene, the averaged s°
value of urban areas from the corresponding image is used
as the reference and subtracted from s° values of other land-
cover classes in that individual image. We then use the
“calibrated” s° to study backscattering characteristics of
different land-covers and their seasonal changes. Plate 2a
and 2b show seasonally averaged s° of each land-cover type
for leaf-on and leaf-off seasons after relative calibration.

Analysis and Discussion
Possible Radar Backscattering Mechanisms over the Study Site
Over vegetated terrain, the incoming radar wave interacts
with elements of the vegetation as well as the ground
surface. Part of the energy is attenuated, and the rest is

scattered back to the antenna. The amount of radar energy
returned to the antenna (backscattering signal) depends on
the size, density, shape, and dielectric constants of the
target, as well as SAR system characteristics, such as inci-
dence angle, polarization, and wavelength (Kiage et al.,
2005; Ulaby and Dobson, 1989). The dielectric constant, or
permittivity, describes how a surface attenuates or transmits
the incoming radar wave. Live vegetation with high water
content has a higher dielectric constant than drier leaves.
This implies that a stronger backscattering signal is expected
from a wet surface than a drier surface. The transmission of
the radar signal through the canopy is also directly related
to the characteristics of the radar (e.g., long wavelength
radar such as L-band Advanced Land Observing Satellite
(ALOS) tends to penetrate through the canopy better than
short wavelength radar such as C-band ERS or RADARSAT) as
well as the canopy structures. Therefore, comparing the
calibrated s° values from various vegetation canopies in
diverse environments can provide insight into the canopy
structure.

Over the study site, radar signal backscattering mecha-
nisms can be simplified into four major categories: surface
scattering, volume scattering, double-bounced scattering, and
specular scattering. Figure 4 illustrates how different
structural layers of vegetation affect the way a radar signal
returns. Forested wetlands often develop into distinct layers,
such as an overstory of dominant tree species, an understory
of companion trees and shrubs, and a ground layer of
herbaceous plants (IFAS, 2006). Therefore, over a dense
forest, the illuminating radar signal scatters from the canopy
surface, and a fraction of the energy is returned to the
antenna. This phenomenon is called surface scattering. The
remaining radar wave penetrates into and interacts with the
vegetation volume, and a portion of the energy is returned to
the antenna. This results in volume scattering. Volume
scattering can also dominate moderately dense forest with
dense understory (Figure 4a). In moderately dense forested
canopy, some microwave energy penetrates through the
overstory and interacts with tree trunks and the ground
layer. If the ground is flooded, a large portion of the
microwave energy is forward scattered off the tree trunks,

Figure 4. Schematic diagrams showing interactions
between the radar signal and (a) forests, and
(b) marshes.
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bounced off the smooth water surface, and then back to the
radar antenna. This phenomenon is called “double-bounced”
scattering (Figure 4a). Because more microwave energy is
scattered back to the antenna than other types of backscat-
tering, the detected SAR image should have enhanced
intensity compared to other types of vegetation canopy
where volumetric scattering dominates.

Over herbaceous canopies, SAR can often penetrate
through the vegetation to reach the ground surface depending
on the vegetation density. If the soil is dry, multiple scatter-
ings between vegetation and the ground surface can attenuate
the incoming radar signal, and the energy back to the radar is
reduced. If the soil is wet, the higher dielectric constant of
the soil reduces the transmission of the radar wave and
enhances the backscattering return. If the ground is flooded,
and the above-water stems are large enough and properly
oriented to allow double-bounce between the water surface
and stems, the backscattering signal is significantly enhanced
(i.e., “double-bounced” scattering) (Figure 4b). If the ground
is completely flooded, and vegetation canopy is almost
submerged, there is little chance for the radar signal to
interact between canopy stems and water surface. Instead,
most of the radar energy is scattered away from the antenna
(i.e., “specular” scattering) (Figure 4b). As a result, little
energy is bounced back to the radar. Floating aquatic vegeta-
tion and short vegetation in flooded area may exhibit similar
backscattering returns and therefore can not be distinguished
from SAR backscattering values. In general, the overall bulk
density of these vegetation classes may determine the total
amount of SAR signal that can be backscattered to the senor.

Radar Backscattering over Different Land-cover Classes
For the purpose of analyzing seasonal backscattering changes,
we split a typical year into two seasons. As previously
summarized, we use the normalized difference vegetation
index (NDVI) to identify the peaks of “green-up,” which occur
around early May and early October (Figure 5a and 5b). For
convenience, we refer to the summer, between May and
October, as the “leaf-on” season, and the rest of the year as
the “leaf-off” season. However, our definition of “leaf-off”
does not necessarily mean that the vegetation has no leaf, as
one may expect of deciduous trees in high latitude regions.
Over our study area, some marsh types exhibit little, if any,
seasonal variation (e.g., black needlerush); others change
green biomass percentage; and others completely overturn
(E. Ramsey, personal communication, 2007). We then use the
“calibrated” s° and average it by season to study backscatter-
ing characteristics of different land-covers and their seasonal
changes (Plate 2).

The agricultural fields over the study area do not follow
the natural cycle of vegetation. Multiple harvests and
plowing drastically change surface roughness and moisture
conditions, which significantly alter radar-backscattering
values. Therefore, we exclude agriculture from further
analysis.

The s° values of swamp forests are the highest among
all of the vegetation classes under investigation (Plate 2a
and 2b). This suggests that the density of trees is moderate
or sparse enough and the density of understory, if any, is
low enough to allow penetration of the C-band SAR signal to
interact with the water surface for double-bounce backscat-
tering, which is consistent with the report by Lu et al.
(2005) based on interferometric analyses. Plate 2a and 2b
show that the mean s° values of swamp forests from ERS
and RADARSAT-1 are about 0.54 dB and 0.93 dB higher
during leaf-off seasons than leaf-on seasons, respectively.
Seasonal backscatter changes over swamp forests are consis-
tently larger than those of bottomland forests. This is proba-
bly because during leaf-on seasons, radar attenuation at the

overstory is increased and double-bounced backscattering is
reduced, which results in decreases in both s° values and
interferometric coherence (Lu et al., 2005). We also observe
that the s°RADARSAT during leaf-on seasons is about 0.86 dB
higher than s°ERS during leaf-off season. This is consistent
with a report by Freeman and Durden (1998). Using C-band
AIRSAR data, they demonstrated that the mean s° of HH-
polarization (e.g., RADARSAT-1) was stronger than that of VV-
polarization (e.g., ERS) over tropical forested wetlands,
primarily due to double-bounced backscattering.

The bottomland forest has the second highest mean
s° values, ranging from �9.4 � �8.4 dB for ERS and
�8.2 � �7.5 dB for RADARSAT-1 (Plate 2a and 2b). The
averaged s° of bottomland forests is consistently lower
than that of swamp forests by 0.52 � 1.26 dB for ERS and 
0.75 � 1.70 dB for RADARSAT-1, indicating weaker radar
signal return from bottomland forest than swamp forest. We
attribute this to the decreased double-bounced backscattering
due to dense understory canopy, which is abundant in
bottomland forests. Similar to the swamp forests, the aver-
aged s°LEAF_OFF is slightly higher than the averaged s°LEAF_ON;
however, the difference is much smaller over bottomland
forests than swamp forests. From the perspective of land-
cover classification, comparison of s° between bottomland
and swamp forests indicates that averaged intensity of
RADARSAT-1 data during any single year contains sufficient
information to differentiate the two classes (Plate 2b and 2c).

Freshwater and intermediate marshes show relatively
similar s° for both ERS and RADARSAT-1. For freshwater
marsh, the averaged s°ERS ranges between �11.0 � 0.8 dB

Figure 5. (a) NDVI values before adjusting the long-term
trends for 1992 � 1998 and 2002 � 2004, and (b)
NDVI values adjusted for long-term trends.
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and �11.2 � 0.8 dB for leaf-off and leaf-on seasons,
respectively, and s°RADARSAT ranges between �11.2 � 0.8
dB and �10.8 � 0.9 dB, respectively. For intermediate
marsh, the averaged s°ERS ranges between �10.7 � 1.0 dB
and �11.5 � 1.0 dB for leaf-off and leaf-on seasons,
respectively, and s°RADARSAT ranges between �11.7 � 1.1
dB and �11.7 � 1.1 dB, respectively (Plate 2c).

The seasonal average values of s°ERS and s°RADARSAT of
freshwater marshes do not show any distinctive trends (Plate
2a and 2b). As for intermediate marshes, the mean values of
s°ERS during leaf-off season are about a 0.9 � 1.5 dB higher
than during leaf-on season, except for 1996; however, the
averaged s°RADARSAT values do not show any consistent trends.

From the perspective of land-cover classification, Plate 2
indicates that freshwater marshes and intermediate marshes
may not be easily distinguishable based on SAR backscatter-
ing signals. Even the comparison of averaged coherence
between freshwater and intermediate marshes does not show
a substantial difference (Lu and Kwoun, 2008). It should
also be noted that, although fresh and intermediate marshes
are outside the direct inundation of most tides, they could
be flooded for extended time periods. In our analysis, those
conditions are not included.

The seasonally averaged s°ERS of brackish marshes
ranges from �13.2 � �11.8 dB, and s°RADARSAT ranges from
�15.0 � �14.1 dB (Plate 2). The drastic difference between
ERS and RADARSAT is probably because we could not co-locate
sampling sites for the two sensors due to a limitation in the
image coverage (Plate 1 and Figure 1). This dislocation could
result in dramatic differences in canopy type and structure
and hydrologic regime. The s° value for brackish marsh is the
lowest among all vegetation types in the study. The averaged
s°RADARSAT during leaf-on seasons is about 0.8 � 0.9 dB higher
than leaf-off seasons, while s°ERS does not show any signifi-
cant difference (Plate 2). From the perspective of land-cover
classification, Plate 2 indicates that single-year SAR data,
particularly RADARSAT-1, would be sufficient to distinguish
brackish marshes from other vegetation communities.

In the case of saline marshes, we could not co-locate the
sampling sites for RADARSAT and ERS data as in the case of
brackish marshes (Plate 1 and Figure 1). The seasonally
averaged s°ERS is in the range of �13.6 � �9.3 dB, and the
s°RADARSAT is about �9.5 � �8.1 dB (Plate 2). The mean
s°ERS_LEAF_ON of saline marshes is comparable to that of
brackish marshes, and the mean s°ERS_LEAF_OFF shows
considerably dynamic inter-seasonal change and is in the
range of freshwater and intermediate marshes (Plate 2c). The
averaged s°RADARSAT is comparable to that of bottomland
forests (Plate 2c). Both ERS and RADARSAT data show that the
averaged s°LEAF_OFF is higher than the averaged s°LEAF_ON, as is
the case with forests. The saline marsh community is inun-
dated daily with salt water tides and is subjected to the ebb
and flow of the tides (LCWCRTF/WCRA, 1998). Therefore, it

provides a favorable condition for double-bounced scattering
between stems and the water surface underneath. From the
image classification perspective, RADARSAT data may be
sufficient to distinguish saline marshes from other marsh
classes. The mean value of s°ERS_LEAF_ON of saline marshes is
so distinct that some level of ambiguity in s°RADARSAT between
bottomland forests and saline marshes can be resolved. In
addition, the proximity to salt water may be another indicator
that separates these two communities.

The student t-test (e.g., Davis 1985) is carried out to
quantify the separability among different vegetation classes
based on the averaged SAR backscattering coefficients. First,
from the means, standard deviations, and sample numbers of
two vegetation classes, the t score and the degree of freedom
are calculated. Then, the t-criterion is selected based on the
confidence level of 95 percent. Finally, each vegetation type
is comprehensively paired with each of the other vegetation
classes to test the statistical separability of the averaged
backscatter values shown in Plate 2. The student t-test results
in t-scores larger than their corresponding t-criteria at the
95 percent confidence level in most of cases, implying that
multi-temporal, seasonally averaged SAR backscatter coeffi-
cients can be used to separate the two corresponding vegeta-
tion classes at a confidence level of 95 percent or higher.
However, in some cases, the t-test results suggest some of the
vegetation types can not be distinguished at the 95 percent
confidence level. Table 3 lists all cases where t-scores are
equal to or less than the t-criteria at the 95 percent confi-
dence level. In these cases (Table 3), the SAR backscattering
values can not be used to distinguish the corresponding
vegetation classes at the 95 percent confidence level. Between
agriculture and bottomland forests, for example, the student 
t- test indicates the t-scores of 0.13 and 0.20 for ERS backscat-
tering coefficients during both leaf-off and leaf-on seasons,
respectively. These t-scores are far smaller than the corre-
sponding t-criteria (1.98), meaning that the ERS backscattering
data can not be used to differentiate between the two vegeta-
tion classes. Similarly, for the freshwater and intermediate
marshes, the t-score is about 1.28 for leaf-on ERS backscatter
data while the corresponding t-criterion is 2.10; this implies
that leaf-on ERS data are not useful to differentiate between
the freshwater and intermediate marshes. However, the leaf-
on RADARSAT data are able to differentiate between the two
vegetations at the 95 percent confidence level as the t-score
(4.48) is much larger than the corresponding t-criterion (2.01).

In summary, to classify wetland classes over the study
area, the seasonal s° values averaged over multiple years
can be used to distinguish among bottomland forests, swamp
forests, saline marshes, brackish marshes, and freshwater
and intermediate marshes. Forests versus marshes can be
identified because the s°ERS_LEAF_ON of marshes is signifi-
cantly lower than that of forests. Swamp forests are marked
with the highest s° values from both ERS and RADARSAT-1.

TABLE 3. STUDENT T-TEST SCORES AND T-CRITERIA AT THE 95 P ERCENT CONFIDENCE LEVEL FOR
CASES WHERE SAR B ACKSCATTERING COEFFICIENTS CANNOT BE USED TO DISTINGUISH THE TWO

CORRESPONDING VEGETATION CLASSES

Bottomland forest Saline marsh Intermediate marsh

Agriculture (0.13, 1.98) (E, F) (0.80, 1.99) (R, N)
(0.20, 1.98) (E, N)

Saline marsh (0.30, 2.03) (E, F)

(1.34, 2.09) (E, F)
Freshwater marsh (1.28, 2.10) (E, N)

(1.66, 2.05) (R, F)

Note: E: ERS; R: RADARSAT; N: leaf-on season; F: leaf-off season.
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Figure 6. Regression modeling between calibrated ERS
s° and NDVI for leaf-off season.

Among the marshes, brackish marshes are characterized
by the consistently lowest s° of RADARSAT-1. A saline marsh
may be identified by its highest averaged s°RADARSAT among
marsh classes. Freshwater and intermediate marshes have
very similar s°. However, the averaged s °ERS_LEAF_OFF for
intermediate marshes is marginally higher than s°ERS_LEAF_ON.
The seasonally averaged s° of both saline and brackish
marshes behaves quite distinctively compared to that of
freshwater and intermediate marshes; therefore, we may
infer that this characteristic may be useful in mapping
changes in salinity in coastal wetlands.

Radar Backscattering and Vegetation Index
We have shown that seasonal variation of radar backscatter-
ing signal responds to changes in structural elements of
vegetation classes. The seasonal changes of vegetation cover
can also be detected by optical sensors. In this section, we
further investigate how the radar signal can be related to
land-cover information derived from optical sensors by
comparing s° to NDVI.

We use NDVI prepared by the U.S. Geological Survey
(USGS) Center for Earth Resources Observation and Science
(EROS) from Advanced Very High Resolution Radiometer
(AVHRR) instruments on-board National Oceanic and Atmos-
pheric Administration (NOAA) satellites. The classes of NDVI
are summarized according to 1992 National Land Cover Data
(NLCD) (http://landcover.usgs.gov/natllandcover.php) by taking
the majority composition of NLCD pixels within a 1 km2 pixel
of AVHRR imagery (J. Brown, personal communication, 2006).
Healthy vegetation absorbs most of the visible light that hits it
and reflects a large portion of near-infrared light, resulting in
high NDVI values. Unhealthy or sparse vegetation reflects more
visible light and less near-infrared light, resulting in low NDVI
values.

Classes of vegetation defined by GAP and the National
Wetland Research Center (NWRC) are compared with those
defined by NLCD. Bottomland forest is comparable to NLCD’s
“deciduous forest” type, where 75 percent or more of the tree
species shed foliage simultaneously in response to seasonal
change. Likewise, swamp forest is comparable to NLCD’s
“woody wetlands” class, where forest or shrubland vegeta-
tion accounts for 25 to 100 percent of the cover, and the soil
or substrate is periodically saturated or covered with water.
The four types of marshes in our study area are comparable
to NLCD’s “emergent herbaceous wetlands,” where perennial
herbaceous vegetation accounts for 75 to 100 percent of the
cover, and the soil or substrate is periodically saturated or
covered with water. Over the time period of SAR data used
for this study, multiple AVHRR sensors are used to collect
data (NOAA-11, 12, 16, and 17) (J. Eidenshink, personal
communication, 2006). For calibration purposes, we estimate
the drift and bias in multiple-year NDVI data (1992 � 1998
and 2002 � 2004) (Figure 5a) as a second-order polynomial
and remove those trends from the original NDVI time series
(Figure 5b). The adjusted multi-year NDVI curves are averaged
into a single year to determine typical leaf-on and leaf-off
seasons. The peaks of averaged NDVI are found in the inter-
vals of 23 April � 06 May in the spring and 24 September
� 07 October in the fall; therefore, we have chosen the time
window from around 01 May until about the end of Septem-
ber as the “leaf-on” season. The leaf-on season is meant to
represent the time when leaves maintain fully developed
conditions and is characterized by peaks in the NDVI curves
in the spring and fall (Figure 5). We then define the rest of
the year as the “leaf-off” season.

As we define the leaf-on season as the time period
when leaves are fully developed, we should not expect
significant changes in radar backscattering. The regressions
between s° and NDVI for all vegetation types do not show

any significant correlation during leaf-on season because the
dynamic range of the variation of NDVI is too narrow com-
pared to radar backscatter changes. During leaf-off season,
both bottomland and swamp forests show moderate to strong
negative correlations with NDVI (Figures 6 and 7); R2 is
0.78 � 0.90 for RADARSAT and 0.49 � 0.59 for ERS. The
negative correlation during leaf-off season is likely associ-
ated with the attenuation of radar backscatter due to the
growth of leaves, which reduces the amount of radar signal
available for double-bounce and volume scattering. As a
result, radar backscatter decreases with the increase of NDVI
for swamp and bottomland forests. Therefore, negative
correlation between NDVI and s° is anticipated.

For the marshes, s°ERS_LEAF_OFF does not show any
correlation with NDVI. However, s°RADARSAT_LEAF_OFF shows
impressive positive correlation with NDVI. The positive
correlation implies that the radar backscattering enhances
with an increase in NDVI, suggesting surface or volume
scattering of the radar signal. For freshwater and intermedi-
ate marshes (R2 � 0.78 and 0.55, respectively), positive
correlation is consistent with our previous interpretation of
s°. Brackish marshes show marginally positive correlation
(R2 � 0.30); we may infer that brackish marshes are not as
dense as the other marshes are to enhance s° sufficiently
with the growth of vegetation. Saline marshes show moder-
ate positive correlation (R2 � 0.66). This might sound
contradictory to our previous interpretation. We speculate
that the increase in NDVI is probably associated with the
thickening of saline marsh stems, which may be translated
into an increase in the double-bounced radar backscattering
signal. By combining NDVI and radar backscatter signal, we
can classify forests versus wetland marshes and gain
additional insight into the qualitative vegetation structure.
Our current results can be improved by using NDVI maps
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derived from the higher spatial resolution imagery and more
detailed classes than those by NLCD.

Conclusions
Multi-temporal RADARSAT-1 and ERS SAR images over south-
ern Louisiana are used to study characteristics of the radar
backscattering coefficient over vegetation classes. Relative
radiometric calibration of the radar backscattering coefficient
based on the urban backscattering coefficient is required to
remove the long-term degradation of ERS-2 antenna power
and scene-to-scene alternations of RADARSAT-1 antenna
strength. Calibrated radar backscattering coefficients over six
land-cover classes, i.e., bottomland forest, swamp forest,
freshwater marsh, intermediate marsh, brackish marsh, and
saline marsh are systematically analyzed to understand the
relationship between seasonal variation of s° and vegetation
canopy structure. Double-bounced backscattering is the
dominant scattering mechanism for swamp forest and saline
marsh. Volume scattering dominates freshwater and interme-
diate marshes and bottomland forests. Brackish marsh is
likely dominated by volume scattering and specular scatter-
ing. RADARSAT-1 backscattering coefficients offer better
separability among different wetland land-cover types than
ERS data, suggesting C-band HH polarization is more sensi-
tive to structural differences than C-band VV polarization.

We demonstrate that radar backscattering coefficients
during leaf-off season have strong correlations with NDVI.
Swamp and bottomland forests show negative correlations
between NDVI and SAR data, while marshes exhibit positive
correlations with RADARSAT data only. We find that the
correlation between s° and NDVI is useful in differentiating
between forests and coastal marshes and in refining our
understanding of vegetation structure. Our study demon-

strates that satellite SAR can be useful for coastal wetland
characterization and monitoring. We anticipate that, in the
future, polarimetric SAR data will significantly improve our
ability for coastal wetlands classification via a physically
sound model of vegetation structure.
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