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Modeling PSInSAR Time Series
Without Phase Unwrapping

Lei Zhang, Student Member, IEEE, Xiaoli Ding, and Zhong Lu, Senior Member, IEEE

Abstract—In this paper, we propose a least-squares-based
method for multitemporal synthetic aperture radar interferom-
etry that allows one to estimate deformations without the need
of phase unwrapping. The method utilizes a series of multimas-
ter wrapped differential interferograms with short baselines and
focuses on arcs at which there are no phase ambiguities. An
outlier detector is used to identify and remove the arcs with
phase ambiguities, and a pseudoinverse of the variance—covariance
matrix is used as the weight matrix of the correlated observations.
The deformation rates at coherent points are estimated with a
least squares model constrained by reference points. The proposed
approach is verified with a set of simulated data.

Index Terms—Interferometric synthetic aperture radar
(InSAR), least squares, phase ambiguity, phase unwrapping,
synthetic aperture radar (SAR).

1. INTRODUCTION

PACEBORNE interferometric synthetic aperture radar

(InSAR) is a valuable technique for measuring surface
deformations due to its high spatial resolution and its ability
of acquiring data remotely. However, the changing scattering
properties of the Earth’s surface with time and/or radar look
direction often limit the applicability of InSAR [1]. Ground
displacement signals are usually mixed with noise due to vari-
ations in the atmospheric conditions and errors such as those in
satellite orbits and surface elevation models.

The emergence of techniques for analyzing multitemporal
SAR images has enhanced the ability of deformation mapping
with InSAR [2]. Multitemporal InSAR techniques, involving
the processing of multiple-temporal InSAR images, provide
a means to address issues in conventional InSAR techniques,
such as decorrelation and atmospheric artifacts. Over recent
years, a multitude of approaches has been proposed in this
domain, which can be broadly classified into two categories,
namely, permanent scatterer [(PS); or persistent scatterer as
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used in some literature] [3], [4], [7], [8], [16], [26] and small
baseline subset (SBAS) InSAR methods [9]-[12], [17]. One
common drawback of both PSInSAR and SBAS methods is the
requirement of phase unwrapping. Because of errors induced
from phase unwrapping, both techniques sometimes fail to es-
timate correctly the parameters [deformation, digital elevation
model (DEM) error, and atmospheric delay] from a stack of
interferograms.

How to reduce or avoid the unwrapping errors is therefore
a challenge that all multitemporal InSAR methods need to
overcome. In applying such techniques, we have found that, for
a set of multimaster interferograms with short baselines, there
are usually a sufficient number of arcs in which the double-
difference phase components due to topographic errors and at-
mospheric artifacts are very small and the relative deformation
rate between two connected points is low. These arcs can be
safely considered to be immune from phase ambiguities. If only
these arcs are taken as observations for estimating the DEM er-
rors and deformations, the complexity of parameter estimation
can be reduced significantly since there is no longer a need of
phase unwrapping. In this paper, we propose a least-squares-
based method that can select efficiently arcs without phase
ambiguities and resolve reliably the deformation parameters
(linear or nonlinear) at coherent points. We first use a network
construction strategy that performs Delaunay triangulation lo-
cally to ensure that coherent points can be connected as much
as possible while not significantly increasing the computational
complexity. A least-squares-based model is then proposed for
parameter estimation during which an outlier detector is used
to identify and remove arcs with phase ambiguities according
to the least squares residuals. Considering the stochastic na-
ture of SAR observations, we introduce a weighting scheme
for the interferometric phases at arcs by applying the law of
variance propagation [13]-[15]. The parameters at the coherent
points are then estimated by applying a least squares model
constrained by reference points. The proposed approach is
tested with a set of simulated SAR data to ensure that the pro-
posed method functions as expected under controlled circum-
stances [13].

II. MODELING SAR INTERFEROGRAMS
A. Coherent Point Network

The starting point of the method is the identification of PSs,
which can be performed using amplitude dispersion index [18]
or other thresholds [7], [19]. The methods work for PSs that
appear in all the interferograms or only some of the interfero-
grams. We therefore call these points as temporarily coherent

0196-2892/$26.00 © 2010 IEEE
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(a) Global Delaunay triangulation network of coherent points. (b) Network after removing arcs with phase ambiguities detected from (a). (c) Local

Delaunay triangulation network of coherent points. (d) Network after removing arcs with phase ambiguities detected from (c).

points (TCPs). Once the TCPs are identified, a network is
constructed to connect pairs of TCP, where each connected
pair is termed an arc as in PSInSAR terminology. Delaunay
triangulation has been widely used for this purpose. However,
the Delaunay triangulation defines a triangular network under
the condition that the circumcircles of all the triangles in the
network are empty without considering the lengths of the arcs
[see Fig. 1(a)]. Although arcs longer than a certain length can
be removed in the final step, the points are not connected with
optimized arc lengths. If only points in a small region (i.e.,
1500 m x 1500 m) are connected, the problem of arc length can
be solved without increasing significantly the computational
complexity. Fig. 1(c) shows a local Delaunay triangulation
where a grid with 100-m spacing is placed over an interfero-
gram and points in a circle with a radius of 750 m centered at
each grid node are selected and connected.

B. Multiple Master Interferogram Stacking

Considering J + 1 SAR images acquired in an ordered time
sequence (to t1 ty), we generate I interferograms

with short baselines (for example, less than 150 m). In each
interferogram 4, the line-of-sight (LOS) displacement of TCP
(I,m) can be described by a linear combination of the mean
deformation rate (v, k = 1,2,...,.J) between the acquisitions
and the corresponding time span. Given two acquisitions, one
is the master (M) image and the other is the slave (S)
image, and M is acquired later than S, i.e., ty;, > tg,. The
LOS deformation (Arj, ) during this time period can be
expressed as

C;—1

AIrli,m = T(tMml’m) - T(tsi,l,m) = Z (tk - tkfl)Vk
k=1

ey

where (I, m) are the pixel coordinate of the TCP; r(taz,, 1, m)
and r(tg,,l, m) are the slant range distances from the master
and slave sensors, respectively, to the target; and C; is the
number of single-look complex (SLC) acquisitions in the time
sequence from S; to M; (including M; and S;).

As (1) is a combination of LOS deformation estimates at the
highest time resolution, there is a risk of overparameterization
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in the equation, which should be carefully dealt with in a
real application. If a linear deformation rate () during the
whole time span is assumed, then v; = -+ =y =--- = 1.
Equation (1) can also be tailored as any combination of defor-
mation rates and time intervals in order to compare with field
measurements that, for example, are performed annually. The
corresponding phase is

4 4 ol
¢2icfo,l,m = - TAri,m = _T kE::l (tk - tkfl)l/k
=BV (2)

where A is the radar wavelength, V' is a vector of deformation
rates, 5; = — (4w /\)T;, and T; is a vector of time combinations
whose elements correspond to the deformation rates within the
respective time intervals

ty — th—1

Ti=[t1—to ta—t ty—tr-1)ixs.

3)
The wrapped phase of a TCP with a pixel coordinate of (I, m)
can be written as

Qb?,m = d)éopo,l,m + (btziefo,l,m + qj);tmo,l,m
+¢?)rbit,l,m + ¢)(Ziop,l,m + qﬁloise,l,m (4)

Where (j)éopo’l,m is the phase related to the topographic error,
®atmo.1,m 1S the phase due to the differential atmospheric delays

between the acquisitions, ¢! ;.. ; ,,, is the phase due to the orbit

errors, gbéom 1.m 18 the phase component due to azimuth Doppler

centroid difference between the acquisitions, and ¢} ... .,
is the noise term that includes potentially the thermal noise,
processing errors, and decorrelation errors. The ¢, ; ,, term

has a direct relationship with the height error Ah; ,,

(bi 4w Bi,l,m h
topo,l,m — i Y l,m
A Tl,m s el,m

=y Ahym 5)

where BY , is the local perpendicular baseline, ¢ is the
slant range distance from the master sensor to the target, and
I m 18 the local incident angle.

‘The phase difference between two TCPs located at (I, m) and
(I',m’) is given by

A¢;,m,l’,m' = Oé;,mAhLm’l”m’ + ﬁZAV + w;’m’l/’m/
) _ i i
wl,m,l’,m’ - A(7zsatmo,l,m,l’,m/ + Agzsorbit,l,m,l’,rn’
7 7
+ A¢d0p,l,m,l',m’ + A(bnoise,l,m,l’m’ (6)

where AV = [Ayll,m,l’,m’ AVl2,7n,l’,m’ AVZI,WL,[’,WL’]T
Since the atmospheric artifacts are strongly correlated in space,
the differential atmospheric contributions between a pair of
nearby TCPs should be very low (for points that are less than
1 km apart, oa4,,,., is usually lower than 0.1 rad® [23]-[25]).
The differential orbital component generally has a similar
characteristic. Since the differencing operation can also
significantly reduce the effects of Doppler centroid differences,
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Fig. 2. Examples of simulated signals. (a) Simulated noise in an SLC image.
(b) Simulated atmospheric artifact. The unit is rad.

the magnitude of A¢gop,l,m,l’,m/ should be very small.
Moreover, if none of the two connected TCPs is significantly
affected by decorrelation, A¢ , will also show a
low variance. Therefore, wf)mJ,ym, can be safely taken as a
random variable with an expectation E(wj,, ;/,..) = 0. For
arcs without phase ambiguities, the system of observations can
be written as

7
noise,l,m,l’m

AP =A [Ahlggvm’} +W

Ad = [A(bll,m,l’,m’ A(bl2,m,l’,m/ A(bll,m,l’,m/]
A=[a p]
a=laf, of, - of,]"
B=[B1 B sr]*

W = [0 st Wt W] (D)

where A® is a vector containing phase differences between two
adjacent pixels in a total of [ interferograms. A is the design
matrix including height-to-phase conversion factors and time
combination matrix. W is a stochastic vector.
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III. LEAST SQUARES SOLUTION

The functional and the stochastic models of the system of
observations can be expressed as

A}Allml/nL’
E{ADd} =A 0l =Ad-W
(am) —a | A

D{A®} =Q% ®)

where (F{-}) and (D{-}) are operators for expectation and
dispersion, respectively, and Q< is an I x I covariance matrix
of observations. The functional model reflects the linear or lin-
earized relationship between the observations and the unknown
parameters, while the stochastic model describes the accuracy
of the observations and the correlation between them. In this
section, a weighted least squares estimator is used to resolve
the parameters in (7) and (8).

A. A Priori Variance Components

In the conventional multitemporal InSAR analysis technique,
all double-difference observations are assumed to have equal
weights. This assumption may not be valid since SAR im-
ages are acquired under different conditions with which the
atmospheric artifacts and random noises vary. For the J + 1
SAR images considered, the variance—covariance (VC) ma-

trix of the random noises (Q’ ;) of the ith TCP can be
expressed as
2
noisea
:mise = (9)
2
noise’

J
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(a) Perpendicular baselines. (b) Temporal baselines of the 44 simulated interferograms.

where it is assumed that the noise is uncorrelated among the
SAR images. When [ interferograms are formed from the J + 1
images, the VC matrix of the interferogams is given according
to the law of variance propagation

m = DQHOiSCDT

noise (10)
where D is a combination matrix indicating which pair of SLC
images are used to generate the interferograms. The combina-
tion matrix has the following form:

0 -1 1 0
D= (11)
0 0 -1 --- 1

Ix(J+1)

We assume that the all the TCPs in all the SLC images
have the variances, i.e., QL ... = Q% .= QI . where

H is the number of the TCPs. The VC matrix of the double-
difference phases then becomes

QY =2Q™. . =2DQyeie DT (12)

The atmospheric artifacts in the double-difference phases are
treated as stochastic variables behaving like noise in the time
domain.

The weights (P94) of the double-difference phases can be
obtained by taking the inverse of the VC matrix. Since it is
possible that the VC matrix is singular, a pseudoinverse of the
VC matrix, i.e., P14 = (Q94)7, is obtained by singular value
decomposition [20] when this happens.
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B. Least Squares Solution

The least squares solution of the observation equations is [18]

[Ahl’m:“m’] = (ATPMA) AT PUAS

AV

AD = A(ATPIA) 1 AT pliAG
r=A® — A(ATPIA)TATPUAD  (13)

where the circumflex * denotes the estimated quantities, and r

is the least squares residuals. The corresponding VC matrices

of the estimated quantities are

Ailel’ m/’ T »dd -1
D e = Qs = (ATPYA
[ -
D{AD} =Qrjp5 = A(ATPIA) 1 AT
D{r} =Quy = Qaa — A(ATP4)71 AT,
14

C. Outlier Detection

A basic assumption of any least squares estimation is that
all the gross errors and systematic effects have been eliminated
before the adjustment computation is performed. However,
during the initial least squares estimation, all arcs, including
those with phase ambiguities in some interferograms, are used
as observations. We detect those arcs with phase ambiguities by
applying an outlier detector and remove them from the solution.
Methods based on statistical tests of the estimated least squares
residuals are often used for this purpose [15]. However, they are
inefficient as statistical testing should be carried out for each of
the iterative least squares solutions. Because double-difference
phases with phase ambiguities (N - 27, N =1,2,...,n) ren-
der the magnitude of the corresponding residuals to increase
significantly, and we are just interested in whether the arcs have
ambiguities or not and there is no need to detect exactly which
interferograms have ambiguities, we use a simplified outlier
detector [21]

Mo (Jri]) > ey/Max ((Q14):0) + 24/ Max (Qagas)i)
(15)

where Max(-) means the maximum value in a vector or matrix.
According to [21], the constant ¢ may be chosen as 3 or 4. When
the threshold value in (15) is reached, the ¢th observation is
considered an outlier at 95% confidence level.

D. Final Solution

After removing arcs with phase ambiguities, a least squares
solution is obtained finally to estimate the unknown parameters.
Compared with the integer least squares estimator and the
method based on maximization of the ensemble coherence,
the proposed method determines more efficiently and reliably
the DEM errors and the differential deformation rates along the
arcs since there is no need to perform a search of phase am-
biguities in the solution space. Once the parameters along the
arcs are determined, parameters at the points can be obtained by
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spatial integration, which can also be performed under a least
squares framework. The arcs and the points can be linked by a
design matrix U

L=UX, (16)

where L is the parameters at the arcs, and X, is the parameters
at the points

X, =[z1 x2 Ti—1 Ti Tl T |

z; =[h; Vi] (17)
1 -1 0 0 0 7
1 o -1 O - 0

U=1o 0o 1 -1 0 (18)
0 0 0 - 1 —1)auy

where G is the number of arcs and H is the number of points. U
is built according to the records of the starting and the stopping
point for each arc during network construction. We set 1 for the
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starting point, —1 for the stopping point, and 0 if otherwise in where C' is a design matrix indicating the positions of the

the matrix U. (N — 1) reference points and M, is the known parameters at
The rank of the design matrix U is always one less than the the (/N — 1) reference points. The solution is

number of TCPs. As a result, the system must be solved relative

to a reference point at which the parameters are known. Letthe X = (Ngp — NgCTNoLCONgy) Z — Ny CTNGEM,

ith point be the reference point with known parameters (R;), (22)
and its corresponding column in U is S;. By introducing L;, where Npgp = U{f PUy, Z= U{f PL;, and Ngc =
with L; = L — S;R;, we obtain CNgpCT.

Ly =UpX (19)

IV. VALIDATION WITH SIMULATED DATA
where Uy is an updated design matrix in which the ¢th column
has been removed and X is the parameter matrix at all points
except the reference point. The least squares solution is

A data set consisting of 21 simulated C-band images is
used to validate the proposed approach. The advantage of
using simulated data is that the estimated parameters can be

T ~1_.7 compared with their true values that are often not known in the
X = (UU PUU) Uy PLL (20) casepof real data sets [13]. During the simulation, the random
phase noise levels in all images are set to a mean of 15°
with a standard deviation of 5°, and the atmospheric phase is
simulated using fractal surfaces with a dimension of 2.67. More
details about the simulation can be found in [13] and [22].
C X+ M, =0 @1 An exaanlt? of the simulateq noise and atmqspheric sigpal is
-1,HH,1 N-1,1 shown in Fig. 2. Forty-four interferograms with perpendicular

where P = I. If more than one reference points (for example,
N,N > 2) are available, the parameters can be solved by
adding constraints

N
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Fig. 6. (a) Histogram of least squares residuals for all observations. (b) Histogram of least squares residuals after removing arcs with ambiguities.
5000 . . -2 TABLE 1
R kg e £ 5w 3m STATISTICS OF ERRORS IN THE ESTIMATED PARAMETERS
4500t -, -
S st b min max mean Std*
4000/ " 5
3500} ' DEM error (m) 8.1 24 26 1.72 (1.64)
. Linear defo. rate (mm/y) -0.45 0.41 -0.008 0.164 (0.137)
E e $ Tgte (*): Standard deviation from Eq.(14)
é 2500+, °
3 QOOOL . and temporal baselines that are shorter than 150 m and two
L 4 years, respectively, are produced from the 21 images (Fig. 3).
1500+ -7 Within an area of 5 x 5 km?, 1500 TCPs are selected. The
1000+ ; simulated DEM errors at the TCP are shown in Fig. 4(a). Both
linear and nonlinear deformation models are simulated to test
500‘ i B the robustness of the proposed method.
ol i e . N . s gv o o -9
0 1000 2000 3000 4000 5000
Ground-range [m] A. Estimation of Linear Deformation Signal
5000 1 mmiy . . . . .
Linear deformation rates with a maximum magnitude of
4500 72 mm/year [Fig.4(b)] are first simulated to test the perfor-
4000L mance of the proposed method. The phase contributions from
{ the DEM errors, deformation, noise, atmospheric artifacts, and
3500| orbital inaccuracy are shown in Fig. 5. For testing purposes,
e 3000/ we first connect the 1500 TCPs by a global Delaunay tri-
ry ’ angulation network [Fig. 1(a)]. After removing the arcs with
g a0 phase ambiguities by the outlier detector, it is found that the
< 2000‘ network constructed by the remaining arcs is too sparse to
1500| estimate the parameters at all the points. We then adopt the
local triangulation strategy as described in Section II-A to
1000 generate a network of 20091 arcs [Fig. 1(c)]. The longest
800 arc has a distance of 1454 m. A histogram of the absolute
[ residuals from the first least squares estimation is shown in
S 2000 3000 4000 5000 -1 Fig. 6(a?. Some 9711 arcs are detected as outliers by applying
Ground-range [m] the outlier detector and removed from the network. The actual
number of arcs with phase ambiguities is 9535, all of which
Fig.7. (a) Errors in the estimated DEM at the TCP. (b) Errors in the estimated ~ Nave been successfully identified. This also means that 176 arcs

deformation rate at the TCP.

have been misidentified. After removing the detected arcs, the
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least squares estimator is performed again. Fig. 6(b) shows the
updated residuals of the remaining arcs.

Using the a priori VC matrix for the double-difference phase
observations, the VC matrix of the estimated parameters (the
DEM error and the differential deformation rate) at each point
is [see (14)]

2.7062
—0.0914

—0.0914

0.0188 |- 23)

QanAy =

Here, the DEM error (first parameter) is in meters, and the
deformation rate (the second parameter) is in millimeters/year.
It is shown therefore from (23) that the standard deviations
of the estimated parameters are 1.64 m and 0.137 mm/year,
respectively.

Once the double-difference parameters at the arcs are deter-
mined, the parameters at the points can be obtained by spatial
integration (when one reference point is assumed). Fig. 7 shows
the errors in the estimated DEM and the deformation rates at
the TCP, i.e., difference between the estimated and the true
values. A statistics of the errors is given in Table I. It can be
seen that the estimated DEM accuracy is not as high as that
typically estimated with PSInSAR. This is mainly due to the
fact that only interferograms with short baselines are used in
the solution.

B. Estimation of Nonlinear Deformation Signal

A nonlinear deformation signal is simulated to assess the
performance of the proposed method in areas experiencing
complex deformation. The model for ground deformation in the
LOS direction takes the following form:

d(T) = —15T + 3T% + 0.273. (24)

TABLE 1II
STATISTICS OF ERRORS IN THE ESTIMATED COEFFICIENTS

Coefficient min  max mean Std*
Linear term (mm/y) -6.58  2.63 -1.94 1.43 (1.25)
Quadratic term (mm/y2) -091 146 0.35 0.35(0.31)
Cubic term (mm/y3) -0.09  0.07 -0.017 0.024 (0.021)

(*): Standard deviation from Eq.(14)

The coefficients to be estimated at the TCP are shown in
Fig. 8(a)—(c). By updating the design matrix, i.e., A in (7),
the least squares model can be used directly for nonlinear
parameter estimation. The errors in the estimated coefficients
(compared with the simulated input) are shown in Fig. 8(e)
and (f). A statistics of the errors at the TCP is given in
Table II. It can be seen from the results that the proposed
method works well with the nonlinear deformation signal,
although the estimation accuracy is not as high as in the case
of the linear signals. This is mainly due to the limited number
of observations available, i.e., interferograms. In order to get
more accurate estimation of complex deformation signals, more
interferograms should be used.

C. Comparison With Unweighted Least Squares Solution

A least squares solution is derived without using the weight
matrix to assess the impact of applying the weight matrix. It
is found from the results obtained that the standard deviation
of the estimated deformation rates is degraded from 0.16 to
0.41 mm/year (Table IIT) when no weight matrix is used. The re-
sults also become worse for the case of nonlinear deformations.
This indicates that a proper weighting scheme is important and
should be used for modeling multiple SAR acquisitions.
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TABLE 1II
COMPARISON BETWEEN ERRORS IN THE ESTIMATED DEFORMATION
RATE USING WEIGHT AND NONWEIGHT MODELS

min max mean std
with
-045 041 -0.008 0.164
Linear defo. rate weight
(mm/y) without
-1.14 1.49 0.037 0.41
weight

D. Computational Burden

The whole processing takes about 1.5 min for the aforemen-
tioned simulated data. Since the selected area and the number
of TCPs in the simulated test are relatively small, it is difficult
to evaluate the efficiency of the proposed method. We address
here the issue of computational burden with figures from a case
of an expanded area of 70 km by 50 km. In this case, 201 778
TCP points are selected, and a grid with 150-m spacing is
placed over the area. All the points within a radius of 250 m
centered at the grid node are connected. This task takes about
5 h using a computer with Intel core2 duo CPU (T9600 at
2.8 GHz) and 4-GB memory. Some 1176922 arcs (each arc
has 55 observations) are then formed. The least squares solution
only takes less than 3 min.

V. CONCLUSION

A least-squares-based method for deformation estimation
using multitemporal SAR data has been developed and validated
with simulated data. The method includes new approaches for
forming local Delaunay triangulation network, detecting and
removing arcs with phase ambiguities, and properly weighting
of phase observations, and a least squares model for obtaining
the solutions. A distinctive advantage of the method is that
it does not require phase unwrapping that is usually time
consuming and often error prone. The results from controlled
tests have shown that the method works well in areas with either
linear or nonlinear ground deformations. The study has also
shown that proper weighting of the phase observations is very
important to achieve the optimal solutions.

Although the proposed method can allow a complicated
deformation model to be used, caution should be exercised in
choosing the model to avoid overparameterization. It should
also be noted that only the a priori VC matrix is used in the
method to calculate the weight matrix for the least squares
model. More investigations should be made to study to further
improve the determination of the weight matrix.
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