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Abstract— Differential interferometric synthetic aperture
radar (InSAR) time-series processing relies on identifying coher-
ent pixels in SAR image stacks that show the persistent scatterer
(PS) or distributed scatterer (DS) behavior. Accuracy of InSAR
time-series estimates is dependent on the quality of selected
PS/DS pixels. Current pixel selection techniques perform well
when identifying highly coherent pixels but produce many false
alarms in low coherence regions due to the inherent bias in
residual phase estimation. Therefore, pixels with low coherence
may have the appearance of noise and be rejected if the coherence
threshold is too high. In contrast, lowering the threshold increases
the number of false alarms introduced in processing giving
noisier time-series as a result of incorrect phase unwrapping.
The multidimensional SAR data acquisition can be described as
a zero mean Gaussian process fully described by the covariance
matrix. In this paper, we investigate the covariance matrix
using a random matrix theory approach to find the statistical
properties of the eigenvalues for simulated and real SAR data.
The probability distribution of all the eigenvalues in this case
is limited by the Marcenko–Pastur distribution. The histogram
of the highest eigenvalue follows a Tracy–Widom distribution.
Thus, by adopting a pixel selection strategy based on a threshold
on the highest eigenvalue of the coherence matrix, we can
differentiate between low coherence and noise pixels. In addition,
our technique provides a methodology to detect the number
of targets present in multiscatterer layover pixels and extract
time-series information from double bounce response of bridges.
Applying the technique for TerraSAR-X data over Berlin shows
the effectiveness of the algorithm.

Index Terms— Differential interferometric synthetic aperture
radar (DInSAR), eigenvalue decomposition (EVD), persistent
scatterer (PS) technique, random matrix theory, time-series
processing.

I. INTRODUCTION

SATELLITE interferometric synthetic aperture radar
(InSAR) provides the perfect tool for measuring

millimeter-level ground displacement over wide swaths of land
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on the Earth’s surface with low-latency revisit periods in all-
weather conditions [1], [2]. The magnitude of cross correlation
between two coregistered SAR image acquisitions is known
as the coherence of the differential InSAR (DInSAR) pixel
and its phase is the interferometric quantity, which gives the
deformation within that period [3]. Assuming the stationarity
and ergodicity of SAR image pixel acquisitions, the empirical
coherence is calculated by averaging within a window of
neighboring pixels. This empirical coherence is a measure of
the extent of decorrelation for a pixel primarily due to tem-
poral and geometric (baseline) degradation/decorrelation [4].
The magnitude of phase noise for an interferometric pixel
is proportional to the decrease in coherence [5]. While the
DInSAR has proven very effective in measuring numerous
deformation phenomena [6]–[9], temporal decorrelation due to
an incoherent movement of individual scattering elements lim-
its its applicability to observe long-term trends. The persistent
scatterer InSAR (PSI) technique [10]–[13] is based on identi-
fying a coherent radar signal (PS) in a stack of topography-
compensated interferograms and discriminating them from
incoherent contributions, to measure the temporal evolution of
interferometric phase of targets with physical manifestation.
Reference [9] shows a statistical relationship between the
amplitude dispersion index (DA = σA/μA, where μA is the
mean and σA is the standard deviation of the amplitude of a
pixel in the SAR image stack) and the interferometric phase
standard deviation (σφ), which suggests that for pixels having
high signal-to-noise ratio (SNR) and exhibiting a stable phase,
DA ≈ σφ . After the initial selection based on (DA < 0.3),
an a priori deformation model is applied to further weed out
pixel candidates whose phase in time shows large deviations
from expected behavior. However, in many cases [14], the
deformation of scatterers is unknown a priori. In Stanford
method for persistent scatterers (StaMPS), phase values for
individual candidates are filtered assuming that deformation is
spatially correlated with neighboring candidates. The residual
phase values over multiple interferograms are used to derive a
measure called temporal coherence, γx . Candidate pixels are
qualified as a PS based on a threshold of the temporal coher-
ence (γx > 0.3). The StaMPS method uses a relaxed (DA <
0.6) limit for initial candidate selection, to allow for detecting
a PS having high dispersion index but low phase variance. To
mitigate the long-term decorrelation effects, which result in
a poor estimate of the deformation time-series of the PS, the
small baselines subset (SBAS) approach [15] uses only short
(temporal and spatial) baseline pairs of SAR images for the
time-series analysis. Although more number of PS are detected
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by this technique without the need for an a priori deformation
model, StaMPS is more suited for processing InSAR data,
assuming pointlike scatterers over urban areas which are
dominated by a large presence of stable man-made targets.
Pixels corresponding to natural targets having low temporal
coherence and pixels containing multiple targets are missed.
A group of pixels corresponding to a large geophysical

target, such as outcrops or natural terrain, covered by sparse
vegetation may have low temporal coherence but share sim-
ilar backscattering statistics [statistically homogeneous pix-
els (SHPs)]. In the SqueeSAR [16], a nonparametric test
[two-sample Kolmogorov–Smirnov test (KS test)] is employed
to identify SHPs (pixels having similar amplitude distribution
over the stack of SAR images). The coherence matrix for these
SHPs is calculated from the SAR data stack and used for
filtering the interferograms prior to phase unwrapping. If indi-
vidual SHP phase measurements are noisy but the spatially
adaptive filtering estimate is stable as indicated by a goodness-
of-fit measure (γPTA), then these pixels together are known
as distributed scatterers (DSs). Unlike the SBAS in which
only short baseline pairs of interferograms are permitted, the
SqueeSAR uses all available interferogram combinations with
appropriate weighting. Essentially, the DS is a group of pixels
together showing a single scattering behavior. In this way,
in addition to those pixels identified as a PS, an increase in
the number of measurement points due to the DS is obtained
especially for nonurban areas.
In urban areas, unlike the DS, we encounter many pixels

affected by layover of multiple scatterers at different elevations
but registered at the same cross range [17]–[20]. Due to
the multibaseline nature of SAR acquisitions, a target scat-
terer occupying a range–azimuth resolution pixel is observed
from slightly different viewing angles every acquisition. SAR
tomography [21]–[23] entails reconstructing the reflectivity
profile for this target scatterer in the elevation direction by
synthesizing an aperture from nonuniformly spaced samples of
the observed complex backscattering distribution by assuming
a certain structure of the elevation response [24], [25]. Numer-
ous techniques for the elevation aperture synthesis include
classical beamforming, performing the Fourier transform on
the interpolated data, and spectral estimation techniques, such
as singular value decomposition inversion among others. SAR
tomography has proved successful in performing 3-D (range–
azimuth height)/4-D (range–azimuth-height-deformation rate)
SAR imaging [26] and in distinguishing multiple scatterers
present in pixels affected by layover phenomena. However,
due to the specific structure assumed for a targets response,
precise phase calibration with respect to atmospheric artifacts
and nonlinear errors is needed prior to performing tomographic
inversion.
Unlike the SAR tomographic inversion techniques men-

tioned previously, Component extrAction and sElection SAR
(CAESAR) [27] does not impose a specific structure on
the elevation response of a scatterer. Instead, it exploits the
principal component analysis (PCA) technique to find the
eigenvector direction in the coherence matrix with the most
average power and hence can be implemented directly at
the interferogram generation stage. Eigenvalue decomposition

(EVD) is performed to calculate the eigenvalue spectrum of the
coherence matrix. Similar to the SqueeSAR, spatially adaptive
multilooking is employed to estimate the coherence matrix.
The eigenvector corresponding to the top eigenvalue is the
direction in the data giving information about the presence
of a primary scattering mechanism. In the case of layover, a
secondary scattering mechanism is represented by next high-
est eigenvalue–eigenvector pair. The original interferometric
phase is replaced by the phase of an eigenvector corresponding
to the highest eigenvalue effectively reducing phase noise due
to interference from eigenvalues representing decorrelation.
Even though this technique is effective in separating mul-

tiple scatterers within a pixel, we are still presented with the
challenge of identifying the number of scatterer targets present
in a given pixel (zero in noise pixels, one in the PS and
the DS, two or more in multiscatterer pixels) based on the
eigenvalue spectrum of the empirical coherence matrix. One
method is to perform CAESAR processing on pixel candidates
with low phase variance (γx > 0.3) to avoid selecting noisy
pixels. The eigenvalue spectrum should be composed of few
large eigenvalues (corresponding to the number of scatterer
targets) and rest of eigenvalues (corresponding to decorre-
lation) equal to the noise variance (σ 2). Many techniques
exist such as the Kaiser–Guttman greater-than-one rule [29] in
which the eigenvalues above a certain threshold (the average
variance of empirical data) corresponds to the number of
targets. The methodology works for high coherence pixels
(having a dominant eigenvalue) but overestimates the number
of target scatterers in low coherence regions. This is because
the empirical coherence matrix is a biased overestimate of the
true coherence affected by the finite estimation window size.
Therefore, even when the coherence matrix represents noise
pixels, their eigenvalues may exceed the threshold merely
by statistical fluctuations. Incorrect pixel selection procedure
consequently impacts phase estimation resulting in poor phase
unwrapping and noisy time-series estimates.
In this paper, we formulate a pixel selection strategy for

time-series InSAR processing using recent advances in the
random matrix theory [28], [29]. The literature on this subject
has dealt extensively with obtaining analytical solutions for
the asymptotic behavior of the joint probability distribution
(jpdf) of eigenvalues for covariance matrices of randomly
generated data [30]. Particularly, we are interested in knowing
how the eigenvalue spectrum of the coherence matrix for
pixels corresponding to noise contrasts with pixels having
one or more stable targets. This allows us to distinguish low
coherence pixels from noise pixels and correctly determine
the number of targets present in layover affected pixels at the
interferogram generation stage itself.
This paper is organized as follows. In Section II, we develop

a statistical description of multibaseline, multitemporal SAR
data. In Section III, we investigate the coherence matrix using
the random matrix theory to find the statistical response of
the eigenvalues for simulated and real SAR data. A pixel
selection technique based on the statistics of the top eigen-
value is adopted. We show that our technique achieves better
candidate selection compared with the amplitude dispersion
index and StaMPS. In Section IV, the time-series analysis of
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SAR data over Berlin demonstrates the significant increase in
measurement points our candidate selection technique achieves
in low coherence regions. The observed time-series deforma-
tion is briefly discussed. Section V draws the conclusions of
this paper.

II. MULTIDIMENSIONAL SAR SIGNAL MODEL

We begin our analysis with the signal characterization for
4D-SAR imaging as assumed in CAESAR [27]. Consider a
stack of N coregistered SAR images each obtained at time
intervals ti with a spatial baseline of bi relative to single master
acquisition, i = 0, 1, 2, . . . , N − 1. The received signal x
for transmitted wavelength λ in each range–azimuth-focused
pixel is the combined scattering response of targets present
at different elevations hi but equivalent cross-range R to
the sensor, undergoing deformation in the line-of-sight (LoS)
direction with a velocity v j , in the matrix form is given as

x = Aϒ (1)

where ϒ = [ϒ0, ϒ1, ϒ2, . . . , ϒM−1]tr is the collection of
backscattering distribution at M discrete bins associated
with discrete samples (hi , v j ), distributed over the eleva-
tion/velocity range of interest. “tr” is the transpose operator.
A = √

N [a0, a1, a2, . . . , aM−1] is the N×M matrix collecting
the steering vectors am

am = e[− j2π(ψhi+ηv j )]
√

N
.

For which, ψ = [ψ0, ψ1, ψ2, . . . , ψN−1]tr, ψi = ((2bi )/
(λRsin(θ))) (sampling frequency in the elevation direction),
where bi is the perpendicular baseline and θ is the incidence
angle. η = [η0, η1, η2, . . . , ηN−1]tr, ηi = 2ti

λ (temporal
frequency), where ti is the temporal baseline.
Assuming the presence of a scatterer at (ĥ, ν̂) for a pixel in

the multibaseline data, the inversion of the scattering matrix
involves the calculation of the covariance matrix

(ĥ, ν̂) = argmax E{(a H x)(a H x)H }
= argmax a H E{xx H }a
= argmax a H Ca

where H stands for a Hermitian operator, and C = E{xx H }
is the covariance matrix estimated from the original complex
data x , and E is the expectation operator.
In the subsequent analysis, we consider the coherence

matrix T obtained by normalizing the complex SAR obser-
vations to avoid any estimation errors due to amplitude dis-
turbances in the data yi = (xi/(E[|xi |2])1/2).
In the urban scenario, the backscattering statistics of pixels

are closely related to the geometry of urban structures they
represent. For this reason, using a rectangular window for
spatial correlation will degrade the measured coherence by
introducing nonhomogenous and neighboring noise pixels in
the estimation. Several studies in SAR polarimetry exploit the
amplitude statistics for a pixel in a stack of SAR images
over the period of acquisition to find similar neighboring
pixels, SHPs. This technique of spatial adaptive filtering
allows preserving the image details. In this paper, we use

the two-sample Anderson–Darling (AD) test. The AD test is
suited to long-tailed scattering distributions, which are more
representative of SAR pixel temporal amplitude fluctuations in
comparison with the more widely used KS test, which places
more emphasis on the bulk of the distribution. It generally
outperforms the KS test and other similar tests when applied to
high-resolution SAR images with different types of scatterers.
For an exhaustive discussion on the different techniques,
please refer to [31].
The empirical coherence matrix for a pixel is given as

T = E[yy H ] =
∑

y∈SHP yy H

L
(2)

where L is the total number of neighboring pixels found
similar to the pixel under consideration using the AD test.
The magnitude of empirical coherence (γ̃(i, j )) is the mea-

sure of correlation between acquisitions (i, j = 1, 2, . . . , N),
wheares the angle component (φ(i, j )) gives the differential
interferometric phase

T =

⎡
⎢⎢⎢⎢⎣

1 γ̃1,N e j φ̃1,2 · · · γ̃1,N e j φ̃1,N

γ̃2,1e j φ̃2,1 1 · · · γ̃2,N e j φ̃2,N

...
...

. . .
...

γ̃N,1e j φ̃N,1 γ̃N,2e j φ̃N,2 · · · 1

⎤
⎥⎥⎥⎥⎦. (3)

For a series of acquisitions, SAR image pixels generally
show multivariate Gaussian characteristics [32]. In this case,
the coherence matrix (T ) fully describes the data and follows
a Wishart distribution. It is a Hermitian positive semidefinite
matrix having real eigenvalues.
The EVD allows for the decomposition of the full rank N-

dimensional coherence matrix such that

T =
N∑

i=1
�i ui u

H
i (4)

where �i = 1, 2, . . . , N are the eigenvalues of the coherence
matrix arranged in the descending order and ui = 1, 2, . . . , N
are the corresponding eigenvectors.
In this paper, we consider 27 high-resolution spotlight SAR

images (0.6-m range resolution and 1.1-m azimuth resolution)
acquired by a TerraSAR-X (X-band, λ = 31 mm) satellite
sensor over the Eisenbahn bridge, Berlin in orbit 55, beam 57
(ascending track), from February 2008 to December 2009.
Fig. 1 shows the SAR amplitude image of the study area in
Berlin.

III. PIXEL SELECTION STRATEGY

A. Coherence Matrix Analysis

Our null model consists of simulating the coherence matrix
for data containing small random entries corresponding to pure
noise. This was simulated through a Monte Carlo process by
calculating random values belonging to a zero mean circular
complex Gaussian distribution. The coherence matrix in this
case is given by a Wishart matrix. From real data, we choose
pixels (Fig. 1) corresponding to water bodies or dense canopy
of trees. In this case, at the X-band, the true coherence between
successive acquisitions should be zero due to a combination
of rapid temporal and volumetric decorrelation effects and all
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Fig. 1. High-resolution spotlight SAR amplitude image of the Eisenbahn
bridge in Berlin acquired by a TerraSAR-X satellite sensor.

eigenvalues should be equal to the noise variance. However,
due to bias in the estimation of the true coherence, the empir-
ical coherence matrix will have random nonzero, nondiagonal
entries of small magnitude.
The eigenvalue spectrum obtained by performing an EVD

on a coherence matrix corresponding to different types of
scatterers for simulated and real data is shown in Fig. 2.
We observe that the magnitude of eigenvalue contributions
(percentage contribution of individual eigenvalues for a coher-
ence matrix) for the simulated noise case [Fig. 2(a)] and
those corresponding to completely decorrelated pixels from
real SAR data [Fig. 2(b)] are identical. For the rest of this
paper, the percentage eigenvalue contribution will be referred
to as eigenvalue. From the data, it is also seen that in the
case of PS [Fig. 2(c)], the top eigenvalue is significantly
large, whereas the rest of the eigenvalues are almost equal
to zero. In the case of pixels containing multiple (we shall
only consider the case of two scatterers in a pixel for this
paper) scatterers [Fig. 2(d)], two significantly large eigenvalues
are observed. Theoretically, for a covariance matrix of data
containing noise and signal, few eigenvalues should have
large magnitude proportional to the signal correlation. The
remaining eigenvalues will be small and of equal magnitude
proportional to the noise variance. This is not observed in the
eigenvalue spectrum for noise pixels [Fig. 2(a) and (b)]. Any
target detection rule based solely on the eigenvalue spectrum,
such as the Kaiser–Guttman greater-than-one rule [29], will
work for highly coherent targets with a few large eigenvalues
but overestimate the number of significant eigenvalues in the
spectrum in the case of low coherence and noise pixels.
Random matrix theory has been successfully used in many

fields of mathematics and financial time-series processing to
explain the nature of covariance matrices. Such an approach
allows us to represent the covariance/coherence matrices as
random processes and analytically obtain the jpdf of eigen-
values. This allows us to understand the interactions between
eigenvalues, which gives rise to the observed eigenvalue spec-
trum and renders an explanation for the few large eigenvalues
observed for noise pixels.
For our null model simulating a decorrelated pixel, we can

directly state the results for jpdf of eigenvalues for large N

value as given in [29]

P(�1,�2, . . . ,�N )

= 1

exp
(−3βN2

4

) exp
(

−
(

β

2

) N∑
i=1

�i

)

×
N∏

i=1
�

(
β
2

)(
(1+L−N)− 2

β

)

i

∣∣∣∣∣∣
∏
j �=k

� j − �k

∣∣∣∣∣∣
β

(5)

where β = 2 is the Dyson index for the complex case.
Equation (5) is seen as to be composed of two competing

interactions. The upper half of the equation looks similar to
a Gaussian process, whereas the lower half causes the value
of the function to vary depending on the distance between
pairs of eigenvalues. Reference [30] has employed a Coulomb
gas analogy to explain this phenomenon. The value of the
jpdf decreases when the eigenvalues get very close to each
other, whereas the probability of having eigenvalues spaced
apart increases. Thus, it can be inferred that the eigenvalues
of a coherence matrix for a random Gaussian process tend
to move away from each other giving a spectrum of unequal
eigenvalues. This is the reason why the observed eigenvalues
for the null case are not equal in magnitude. Fig. 3(a) gives the
histogram of all eigenvalues for the simulated null case. The
histogram follows the Marchenko–Pastur distribution. As the
eigenvalues get closer to each other in magnitude, the probabil-
ity of such an event decreases. Also, the ripple in the distribu-
tion suggests that the large magnitude eigenvalues of noise pre-
fer to occupy discrete values causing local reduction in density.
With regard to the statistical response of the top eigenvalue

for the null case, as shown in [29] and [34], the asymptotic
distribution of largest eigenvalue follows a Tracy–Widom
distribution. This is seen in Fig. 4 after median location and
deviation from median (MAD) scale transformation have been
applied to the top eigenvalue for 10 000 simulation runs. The
top eigenvalue for the noise pixels in the real SAR data should
fall within the range of the Tracy–Widom distribution. This
will not be true in the case of pixels containing a stable target.
The top eigenvalues for these pixels will exceed this threshold.
For the purpose of our analysis, we set the threshold to 3.5
MAD (� = 25%) from Fig. 4. The false alarm rate is 0.5%.

B. Eigenvalue Thresholding Scheme Applied to Real Data

From the Berlin SAR data, pixels whose top eigenvalue is
less than the threshold are qualified as noise pixels and the his-
togram of the eigenvalue spectrum is shown in Fig. 3(b). The
results are strikingly similar to the one expected from Fig. 3(a)
using simulated data. In Fig. 3(c), we plot the eigenvalue
density for pixels qualified as a PS. The probability density
is seen to be composed of two parts, one containing eigen-
values corresponding to stable targets [Fig. 3 (right column)]
and the other containing the eigenvalues representing noise.
Incidentally, Fig. 3 (left column) of the eigenvalue distribution
looks similar to the eigenvalue distribution for the null case.
Thus, we can infer that the eigenvalues corresponding to
decorrelation arrange themselves according to the jpdf for
the random matrix model. In the case of multiscatterer pixels



NAVNEET et al.: NEW INSAR PS SELECTION TECHNIQUE USING TOP EIGENVALUE OF COHERENCE MATRIX 1973

Fig. 2. Contribution of eigenvalues for different scatterer types. The x-axis represents the eigenvalue and the y-axis represents the eigenvalue contribution. (a)
Simulated noise using random matrix theory. (b) Real data pixels corresponding to noise. (c) Real data pixels corresponding to PS. (d) Real data multiscatterer
pixels affected by two target layovers.

Fig. 3. Histogram of all eigenvalues of the coherence matrix for different types of scatterers. The x-axis represents the eigenvalue and the y-axis represents
the probability density. (a) Simulated noise using the random matrix theory. (b) Real data pixels corresponding to noise. (c) Real data pixels corresponding
to a PS. (d) Real data multiscatterer pixels affected by two target layovers.

having another secondary target, the top two eigenvalues are
of comparable magnitude. The joint probability density is
composed of three parts as seen in Fig. 3(d), two distributions

representing two individual targets with the primary eigenvalue
having greater or comparable magnitude to the secondary
eigenvalue.
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This technique can be used to discriminate stable scattering
targets having a distinct distribution in comparison with noise.
Also, it is very effective in identifying layover-affected pixels,
which have the presence of more than one PS. The phase of
the eigenvector corresponding to the eigenvalue of the target of
interest can be used to filter the original interferogram phase.
The StaMPS temporal coherence is a measure of the

temporal variation of the residual phase of a pixel obtained
by spatially filtering its phase with neighboring candidates
assuming deformation and noise artifacts, such as orbital error
and atmosphere, are spatially correlated

γx =
∣∣∣∑N

i=1 exp
[

j
(
φint_orig,x,i − φ̃mean_est,x,i − φ̂not_corrx,i

)]∣∣∣
N

(6)

where φint_orig,x,i is the original interferometric phase for the
xth candidate in the ith interferogram, φ̃mean_est,x,i is the mean
estimate of correlated phase (LoS deformation, atmospheric,
and orbital errors), and φ̂not_corrx,i is the estimate for the non-
correlated phase (residual DEM artifacts and noise).
The accuracy of measured residual phase is dependent on

the filtered phase estimate from neighboring candidates. In the
case of scatterers surrounded by noise, the temporal coherence
is underestimated. Also, in Fig. 5(a), it is inferred that the
temporal coherence is overestimated (0.1–0.3) for pixels cor-
responding to noise such as those on water. Although pixels
corresponding to double bounce of bridge have high SNR as
seen from Fig. 1, they are indistinguishable from noise in the
temporal coherence map. In the StaMPS PS selection process,
the probability that a candidate pixel is a PS is proportional
to the magnitude of the temporal coherence. It performs well
when detecting a PS having high temporal coherence (>0.3)
[Fig. 5(b)], still quite a number of false alarms in water
have been detected, suggesting that an even higher threshold
should be imposed. Relaxing the threshold on the temporal
coherence for PS selection (>0.20) only introduces more false
alarms [Fig. 5(c)] without increasing measurement points for
the bridge section and double bounce. Fig. 5(d) shows the
results for our eigenvalue thresholding to qualify pixels as
stable candidates. Most of the false alarms detected using
a temporal coherence threshold have been rejected by our
selection strategy. This shows that even though there is a bias
in empirical coherence, the statistical properties of the top
eigenvalue of a random matrix model can be used to identify
and reject these pixels. In addition, the low coherence bridge
section and the pixels corresponding to double bounce have
been selected. The eigenvalue thresholding strategy reveals a
highly contextual relationship between the eigenvalues and the
pixel they represent.
For further time-series analysis, we will assume only one

scatterer represented by the highest eigenvalue per pixel. The
3-D phase unwrapping procedure as described in [35] is used
in this paper.

IV. TIME-SERIES ANALYSIS

The time-series analysis using the PS approach [36] reveals
a combination of periodic and linear deformation in Berlin

Fig. 4. Distribution of top eigenvalue of coherence matrix. The 10 000 simula-
tion runs for noise (after median and MAD location and scale transformation).
The median is 18.43 and MAD is 1.02.

for the Eisenbahn railway bridge. Seasonal variation of tem-
perature causes the bridge to expand during the summer and
contract during winter. This causes a periodic deformation
pattern evident in the results published in [37] (around 10 mm).
3-D geodetic mapping and decomposition of the InSAR defor-
mation is performed using a combination of ascending and
descending pass images [37]. However, it is also seen that
there is an absence of PS points over the western section of
the lower bridge Fig. 1 primarily in ascending track [36], [37].
Therefore, it will be difficult to obtain 3-D deformation
estimates for PS, which are only visible from a single imaging
track. This is usually true for PS points of targets in shadow
regions in the SAR images from one of the tracks, but this is
not the case for the Eisenbahn bridge which is clearly visible
from both the tracks.
There is also a lack of the literature discussing the detection

of PS points on the double bounce for this bridge, which is
observed in the amplitude data (Fig. 1). The first returns from
a bridge will appear to be closer to a radar in the focused
SAR image than its original position (at the point on water
directly below the bridge) in proportion to the height of the
bridge above the water surface. The double bounce, however,
is due to the reflection of the radar signal from the bridge
to the water before arriving at the receive antenna of the
radar. These returns will be focused to the original position
of the bridge above the water surface. These returns are a
combination of stable scattering from targets on the bridge
in addition to a decorrelation effect due to the scattering
from the water surface. The decorrelation caused due to the
scattering from the water surface is the primary reason why
no PSs are detected even though the returns appear extremely
bright and stable in the amplitude image. This is confirmed
from our analysis using the StaMPS approach, which reveals
that the missing sections of the bridge and double bounce
have low temporal coherence measure [Fig. 5(a)]. The average
deformation rate estimate using StaMPS is shown in Fig. 6
whereas that using our pixel selection strategy is shown
in Fig. 7.
Several differences can be noted.

1) The total number of measurement points detected by
StaMPS is 48259 (Fig. 6) and those detected using our
selection strategy is 220914 (Fig. 7) which is 4.5 times
increase in measurement point density.
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Fig. 5. (a) Temporal coherence obtained after processing the Berlin SAR data in StaMPS. The double bounce and a section of the bridge seem to have very
low temporal coherence equivalent to water pixels. (b) Total pixels selected for phase unwrapping with temporal coherence threshold >0.3. (c) Total pixels
selected for phase unwrapping with a temporal coherence threshold >0.2. (d) Total pixels selected for phase unwrapping using our eigenvalue thresholding
scheme.

Fig. 6. Average LoS deformation velocity for the Berlin data using traditional
StaMPS processing.

2) Our capability to discern between low coherence pixels
and noise has dramatically improved with the increased
number of detected points over the low coherence
regions. In addition, we have been able to identify new
regions in the image including the west section of bridge
and double bounce reflections of the bridge. This is the
first time that double bounce detection in the time-series
analysis is being reported.

3) The false detection of stable targets over water pixels
in the case of StaMPS is completely rejected with our
selection strategy [Fig. 5(b)–(d)].

4) Our algorithm also gives us the flexibility to select from
multiple targets from within layover-affected pixels.
These pixels are usually rejected in traditional time-
series processing, because targets undergoing variable

Fig. 7. Average LoS deformation velocity for the Berlin data using eigenvalue
thresholding scheme processing.

motion within the same pixel tend to reduce the coher-
ence of the pixel.

5) Targets present in water surrounded by noisy pixels are
also rejected in traditional processing due to their low
temporal coherence. Such pixels are now selected in our
processing [Fig. 5(c) and (d)].

The missing portion of the bridge as seen in Fig. 1 but
for which no PS have been found in Fig. 6 is seen to be
composed of two sections of the bridge resting on a pillar.
One section is part of the bridge above water, whereas the
other is part of the section attached to the ground. From
Fig. 6, it is clear that the bridge above water is experiencing
deformation, whereas the sections attached to the ground
are stable. From our results in Figs. 7 and 8, we see that
the new PS points found on the missing segments of the
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Fig. 8. Average LoS deformation velocity for the Berlin data using eigenvalue
thresholding scheme processing (cropped from Fig. 7 to show the detection
of the missing bridge section and double bounce response of a bridge).

Fig. 9. Time-series LoS deformation for the Berlin data using eigen-
value thresholding scheme processing showing seasonal deformation over a
two−year acquisition period (February 2008−−December 2009).

bridge in Fig. 6 experience the similar deformation to their
corresponding sections (above water or connected to ground)
for which PS information is available in Fig. 6, thus validating
our hypothesis that there was meaningful information, which
could be extracted from these pixels if we found a way to
differentiate them from noise. Similarly, the new PS found on
the section of the bridge connected to the ground is found to
be stable.
Due to a combination of linear and seasonal motion,

it appears as if the bridge above the water is moving toward the
radar sensor, whereas the rest of it is stable. Purely seasonal
deformation can be clearly observed in Fig. 9. In [36], this has
been related to the coefficient of thermal expansion and the
maximum temperature difference. These results corroborate
with the findings of this paper.
The time-series plot in Fig. 9 shows the LoS deformation

for PS showing zero average deformation over the two-year
acquisition period. The left-hand y-axis shows the deforma-
tion of the scatterers in millimeters, whereas the right-hand
y-axis shows the temperature in Celcius at the time of the
acquisition. There is a clear trend in seasonal variation in
temperature, which causes the thermal expansion of material
used in construction of the bridge, which reflects in the time-
series deformation estimate. It can be seen that the largest
disagreement would be around a few millimeters. This can
arise due to multiple reasons. First, the weather station is
located at the Berlin airport, which is around 10 km from
the InSAR measurement site of concern (Eisenbahn Bridge),
which could locally have a different temperature. Second,

the ambient temperature may also change with regard to the
height of the InSAR PS scatterer (points on the bridge). Third,
some atmospheric error might be leaked into the deformation
measurement during the time-series processing.
Finally, it should be noted that the spotlight data set is

chosen, because it has a high density of the PS and the DS
as well as multitarget layover pixels. The river in the test site
and shadow created by the bridges are ideal regions to test
the decorrelation model. Numerous publications [36], [37] on
the time-series analysis using multiple techniques (PS, SBAS,
Tomography, and so on) with this particular data set helped
in calibrating the algorithm. Also, this paper primarily came
out of trying to address the problem of the missing section
of the bridge due to low coherence using conventional time-
series InSAR techniques as shown in this paper, which was
a recurring problem in all prior publications. However, the
feasibility of the proposed technique on middle-resolution
SAR imagery is a great topic for further research.

V. CONCLUSION
PSInSAR processing is a powerful tool for performing

continuous, wide-scale, and precise deformation monitoring
for a host of geophysical phenomena. Several algorithms,
such as SBAS, SqueeSAR (DS), and CAESAR, have been
touted to improve the number of measurement points obtained
for stable, layover, and slow decorrelation environments. The
primary metric used to qualify pixels for phase unwrapping is
the average magnitude of temporal coherence over the interfer-
ogram stack. These techniques perform well when detecting
measurement points over stable high-coherence regions but
provide poor results over regions of low temporal coherence,
because noisy pixels may also have comparable temporal
coherence due to the bias in the coherence estimation.
In this paper, we have developed a model for decorrelation

based on recent advances in the random matrix theory. It has
been shown that the probability distribution of all eigenval-
ues of the coherence matrix for a pixel is limited by the
Marchenko–Pastur distribution and gives far more information
about the decorrelating nature of a pixel in comparison with
purely the eigenvalue spectrum of the coherence matrix. The
top eigenvalue of the spectrum follows a Tracy–Widom-like
distribution. The random matrix model inherently captures the
bias in the temporal coherence, which affect the statistics of the
jpdf and top eigenvalue. Therefore, we can apply a threshold
on the top eigenvalue of the coherence matrix spectrum to
qualify pixels as stable or decorrelated scatterers.
Our time-series analysis results over the Eisenbahn bridge

in Berlin show the substantial increase in measurement points
over low-coherence regions. The results not only demon-
strate an increase in measurement point density, but also
the advantage of obtaining measurement points over regions
unidentified by other algorithms (missing region of the bridge
and double bounce). These results are indicative of the per-
formance improvement obtained by looking at InSAR as
a random matrix theory phenomena instead of the tradi-
tional temporal coherence model. We are able to present a
technique to pick stable pixels from interferogram stacks.
However, the time-series analysis may require filtering of the
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InSAR measurement prior to phase unwrapping. We suggest
a CAESAR-like filtering [28] to be performed on the selected
pixels before time-series estimation. Since both techniques
involve EVD, a PCA-based filtering technique can be inte-
grated into the current processing scheme.
It is possible that seasonally coherent scatterers as well

as temporary scatterers may provide relevant deformation
information only over a subset of the total period for which the
time-series processing is desired. Based on the coherence inter-
ferograms of small baseline pairs, for every pixel, the number
of SAR images involved in the covariance matrix estimate
can be changed. Further research will focus on improving the
random matrix model to include large-tail distributions and
characterizing the statistical properties of jpdf of eigenvalues
representing numerous scattering mechanisms, in addition to
improving the computational efficiency of the algorithm.
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