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Abstract— A broad range of studies have been conducted so
far to quantify the effect of soil moisture on synthetic aperture
radar (SAR) intensity and interferometric synthetic aperture
radar (InSAR) phase. The introduced models are either intensity
or interferometric models, and there is no single scattering model
that can estimate both intensity and phase changes, indicating
the subject is poorly understood. Here, we quantify the influence
of soil moisture on InSAR phase and SAR intensity by employing
a volume scattering model. We model soil as a collection of
randomly distributed independent point scatterers embedded
in a homogeneous background. Our volume scattering model
successfully estimates SAR intensity and InSAR phase changes
due to soil moisture changes. In addition to soil moisture changes,
the model also takes into account the scatterers’ size and their
volumetric fraction. This may open a new window in the study
of soil structure using SAR images and InSAR methods. Our
results indicate that the structure of soil manipulates the way soil
moisture alters the SAR intensity and InSAR phase. The model
has been evaluated against field soil moisture measurements
and shown to be successful in modeling InSAR phase and SAR
intensity.

Index Terms— Interferometric synthetic aperture radar
(InSAR) phase, modeling, synthetic aperture radar (SAR) inten-
sity, soil moisture.

I. INTRODUCTION

NTERFEROMETRIC synthetic aperture radar (InSAR),

which is an all-weather, day-or-night technique, has the
ability to remotely sense millimeter to centimeter scale sur-
face deformation with a high spatial resolution of tens of
meters or better [1]-[3]. InSAR provides valuable input to
the study of earthquakes, volcanos, landslides, permafrost
processes, and so on [3]-[5]. Two synthetic aperture radar
(SAR) images taken at different times are combined to make
an interferogram to detect ground surface deformations as
well as to generate digital elevation models (DEMs) [1]-
[3]. Between the two images, the water content of the soil
being imaged is subject to change. The temporal change
in soil moisture has been known to contribute to InSAR
phase and SAR intensity changes [6]-[10]. Consequently,
InSAR-detected ground displacement can be systematically
biased by the changes in soil moisture. The uncompen-
sated biases in the spatial and temporal patterns of InSAR
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detected-displacement limit the reliability and robustness of
InSAR [6]-[10].

Unlike ground deformations, which are spatially and
temporally correlated, the spatial and temporal variabilities of
soil moisture are complex [11], and in practice, the influence
on InSAR phases can be confused with atmosphere artifacts.
Some atmospheric artifacts can be compensated by utilizing
spatial-temporal filters [11], [12] since they often feature
spatially correlated variations [13]. Unlikely, soil moisture is
not always correlated spatially as its value varies abruptly,
for example, across boundaries of two agricultural fields or
different land cover types [11]-[14]. Soil moisture’s temporal
variability is also intricate [11]-[14]. Therefore, temporal
filters may not be as practical as it is to mitigate turbulent
tropospheric phase artifacts, which are temporally uncorrelated
on time scale of days [13]. Also, in some cases, terrestrial
processes and subsequent movements are closely related to
the changes in soil moisture. For example, sudden landslides
can happen after rapid snowmelt or heavy precipitation [15].
Soil moisture also indicates groundwater conditions [16] and
is in a close relationship with permafrost thawing and defor-
mation [4]. Broadly speaking, soil moisture is a key variable in
agricultural and environmental studies [17]-[19] and plays a
vital role in the terrestrial water cycle, exchange of energy
and carbon fluxes between the atmosphere and the land
surface [18], [19].

Potentially, modeling soil moisture influence on InSAR
phase measurements and SAR intensity changes provides a
means to compensate soil moisture-induced InSAR phase
artifacts and also to retrieve surface soil moisture. The
first reported signal of soil moisture on InSAR images has
been reported in [14]. One of the interferograms over the
agricultural field in California, generated using SEASAT data,
featured phase changes corresponded to field boundaries. The
observed phase was inferred to be related to soil moisture.
Swelling characteristics of the soil convinced the authors to
ascribe the phase change to surface movement (expansion),
i.e., shortening in the travel path of radar wave. Since then,
soil moisture-induced phase changes on interferograms from
satellite SAR data [7], [8], [20], and airborne and indoor
experiments [21]-[23] have been continued to be reported.

New experimental studies later cast doubt on the expansion
hypothesis. For instance, Rudant et al. [24] in a laboratory
experiment noted apparent subsidence over wetted soil and
sprinkled planets. Hensley et al. [11] and Morrison et al.
[25] also noticed that the phase change is larger than the
deformation of the surface of the soil, indicating that the
observed phase cannot be caused by a realistic deformation.
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Alternatively, the influence of soil moisture on the InSAR
phase has been attributed to soil volume scattering [9], [10].
Zwieback et al. [9] empirically analyzed the applicabil-
ity of the aforementioned hypotheses. Using the data of
two L-band airborne campaigns, the authors revealed that
the soil moisture-induced phase was not consistent with the
penetration depth or the soil swelling hypotheses but only
with dielectric volume scattering mechanism. Upon wetting,
the dielectric constant of the soil and consequently the optical
path between the antenna and the scatterers in the soil volume
increase. As the soil absorbs water, the replacement of air
within free spaces of soil by water increases the dielectric
constant of the soil since the magnitude of the dielectric
constant of water is much greater than that of air or sand
grains. The increase in dielectric constant corresponds to an
increase in the wavenumber in the soil, which gives rise to
an increase in phase. This is manifested as a movement away
from the antenna or an apparent subsidence of the surface,
even with no mechanical deformation on the ground.

So far, a broad range of studies from controlled experiments
to observational studies without soil moisture information
have been conducted to quantify the effect of soil mois-
ture on SAR intensity and InSAR phase and coherence
[4], [6]-[10], [7], [8], [11], [14], [20]-[26]. The models can
be divided into interferometric and intensity models. On the
one hand, a number of interferometric models have provided
mathematical volume scattering models ranging from simple
analytical expression (see [9]) to more complicated numerical
solutions to Maxwell’s equations to estimate soil moisture-
induced InSAR phase artifacts (see [10]). Basically, the models
can potentially be used or modified for different soil types as
well as layered and/or depth-resolved observations. However,
all the interferometric models that share in common is that the
temporal change in volume soil moisture has been purported
to be the primary influential factor in the models. Hence,
these interferometric models do not consider the influence
of soil’s structure, i.e., the size and distribution of scatterers,
on InSAR phase changes. On the other hand, intensity models
usually attribute soil moisture-induced SAR intensity changes
to surface scattering solely [27]—-[31], and volume scattering
is either neglected or employed along with surface scattering
models to provide an explanation for negative slope that
appears on SAR intensity curves at small soil moisture values
[32], [33].

To the best of our knowledge, no volumetric soil moisture
model has been introduced that takes into account the soil
volumetric structure and addresses both intensity and phase
changes. In this article, we present a new approach and a
comprehensive model to estimate soil moisture-induced SAR
intensity and InSAR phase changes. To this end, we model
the soil as a collection of discrete coarse scatterers, i.e., with
a diameter of few centimeters or larger, embedded in an
attenuating dielectric medium comprising of finer soil grains.
Therefore, our volume scattering model can not only provide
an improved estimation of soil moisture-induced intensity
and phase changes but also potentially be used to infer soil
structure. The rest of this article is structured as follows:
Section II describes the introduced volume scattering model.
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Section III includes simulated results. Section IV provides a
discussion on the results and also mathematical analyses to
support the outcomes. Section V provides validation of results.
Conclusions appear in Section VI.

II. VOLUME BACKSCATTERING MODEL

Here, we model the expected return signal from a pixel
after SAR focus. Soil, the scattering object, is modeled as
a half-space dielectric medium with N randomly distributed
independent point scatterers in a resolution cell. When an
electromagnetic wave strikes on the soil surface, a part of the
incident wave reflects away, whereas a fraction of it transmits
into the soil and decays exponentially at a rate governed by
the imaginary part of the medium’s complex wavenumber
[34]-[36]. Also, as the wave propagates through the medium,
its phase is manipulated by the real part of the medium’s
complex wavenumber [34]-[36]. Once the wave is scattered
by a point scatterer within the soil medium, a part of the
scattered wave propagates backward. Through the backward
propagation, the dielectric medium again modifies its ampli-
tude and phase until it reaches the soil-air boundary. A part
of the transmitted wave at the soil-air interface propagates
back toward the antenna. Then, the signal is further modified
by applying slant range and azimuth resolution functions,
W, and W,, respectively. Finally, the scattered signal from a
single scatterer located at (x;, y;, z;) within the soil becomes
u; = ejsztljztzjlsie“’zf—(yr)

x ) 2tkoyi sin (0,)+zicos(@,)) Wa (xi) Wr (i sin () cos (0)zi) (1)

where n is the refraction index of the medium, 6; and 6, are
the incident and refracted angles, respectively, #; ; is the one-
way transmission coefficient of amplitude from medium i to
medium j, R is the propagation distance, i.e., the slant range
of the pixel, a and f are real and imaginary parts of jy, which
y, a, and B are propagation, absorption, and phase constants
of the medium, kg is the free air wavenumber, and s; is the
scattering amplitude of the scatterer.

The complex-valued SAR backscattering u, i.e., the total
backscattering from the scattering points within a resolution
element, is the coherent summation of the point scatterers’
backscattering [37], [38]

w=>"u @)

i=1

where u; is the backscattering signal of the point scatterer
located at (x;, yi,z;) within the soil. The point scatterers
are randomly distributed in the soil volume, randomizing
the total signal which is the summation of random signals.
By assuming uniform random distribution, the soil volume
can be considered as a symmetric target in the azimuth and
ground range directions, meaning that the backscattered signal
is a function of variations in the vertical direction.

The pixel’s backscattering is the collection of contribu-
tions of all scatterers (grains) embedded in the soil [38].
The scattering and absorption coefficients of a scatterer are
functions of its size, dielectric constant, and the wavelength.
In the cases where the particle size is much smaller than the
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wavelength, i.e., clay, silt, and sand soil particles, Rayleigh
approximation can be used to express the scattering, extinction,
and absorption coefficients [34]-[36]. It is an approximation
of Mie equations and can be expressed only by the first two
terms of the Mie series [35], [36]

8
& = §X4|K|2 A3)
8
& = yIm(—K) + 5x4|1<|2 4)
511 == fe - 5s (5)

where &, &, and &, are the scattering, extinction, and
backscattering efficiencies, respectively, and
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In the above equations, 4 is the free space wavenumber, r,
is the radius of the point scatterer, €, is the real part of the
dielectric constant of the background, n, and n, are complex
indices of refraction of the scatterer and the background, and
n is the ratio of the two refraction indices.

The expressions in (2) are valid only for |ny| <« 0.5
[34], [35]. Consequently, for L-band radar measurements,
the Rayleigh approximation is always valid for medium and
small grains, i.e., sand, silt, and clay, even with large dielectric
constants of the soil. For larger grain sizes, e.g., gravel,
depending on the dielectric constant, the assumption may
not always be satisfied. Once the dielectric constant of the
soil increases, the indicator |ny| gradually increases to reach
values larger than 0.5 [see (6) and (7)]. For C-band measure-
ments, depending on the dielectric constant of the medium,
the Rayleigh approximation may not be applicable even for
medium grain sizes. In such cases, Mie equations [35], [39],
[40], which involve no approximations, should be used instead.

Using Mie solutions, the scattering, extinction, and
backscattering efficiencies and scattered complex amplitudes
are expressed in the form of converging series [35], [39], [40]
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where §1 and §> are the scattered complex amplitudes for
perpendicular and parallel polarized waves, respectively. In the
above equation, # is the scattering angle, 7y and 7 are the
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Fig. 1. Mie volume scattering and absorption cross sections for different
grain sizes.

functions of @ and n, and finally a; and by are known as
the Mie coefficients. The equations for the coefficients are not
repeated here, instead interested readers are referred to [35],
[39], [40] and the references therein for more details about the
coefficients and strategies to calculate them.

Once the Mie efficiencies are calculated, the volume cross
sections (m2/m?3) are obtained by summing cross sections
(m?) over N, (—m?) particles per unit volume

Ny N,
K= 0sre) =Y &) x wrf

(14)
k=1 k=1
Ny Ny

ke =Y Qelr) =Y &lr)xmrf (15)
k=1 k=1

where x; and k., are volume scattering cross section and
volume extinction cross section, respectively, and N, is the
number of point scatterers embedded in the soil. The volume
absorption coefficient is related to the absorption constant of
the medium o by x, = 2a [35]. The extinction coefficient «,
includes the scattering coefficient x; and absorption coefficient
i, of dielectric medium [32], [41], [42]

ke = ks + ka. (16)

Fig. 1 shows the plot of Mie volume scattering and volume
extinction cross sections [see (14) and (15)] for different grain
sizes. It can be seen that the Mie volume scattering cross
section, plotted in logarithmic coordinates in Fig. 1, increases
by enlarging the size of grains. For example, the Mie volume
scattering cross section of a grain with a size of 10 mm is
about 1000 times larger than that of a grain with a size of
1 mm (Fig. 1). This means that the scattering of gravel grains
with a radius of 1 cm occupying only 1% of a soil’s solid
volume is ten times larger than the scattering of background
grains with grain size of 1 mm occupying 99% of the total
solid volume.

Unlike the volume scattering cross section, the volume
extinction function is almost independent of grain size, at least
for the range of sizes we study in this article, i.e., up to a few
centimeters. This means that the signal scattered by the soil
volume is dominated by larger grains and that the contribution
of smaller grains becomes negligible if large grains exist in
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the soil. However, all grains, regardless of their size, equally
contribute to the absorption.

III. SIMULATING RESULTS
A. Constant Soil Moisture Profile

Here, we provide simulation results for soils with different
structures and soil moisture changes. In our model, the soil
volume is assumed to a collection of randomly distributed
point scatterers, i.e., larger grains, and embedded in a lossy
dielectric medium, i.e., finer grains. Without loss of generality,
we assume a soil with N, point scatterers of the same size p
occupying fi percent of the soil’s total volume

5= 2
Tr;

a7

where f; is the fraction of the total volume occupied by
the scattering soil particles. Then, we calculate soil moisture-
induced interferometric phase and SAR intensity changes over
the soil with different r, and f; values. The dielectric constant
of the wet soil was calculated using Hallikainen mixing
model [43]. By increasing soil moisture, water fills the free
spaces between the particles in the porous background. This
increases the dielectric constant of the background. Unlike the
porous background, large grains can only be wrapped by a
layer of water. The thickness of the water layer increases by
increasing soil moisture, and its maximum thickness is related
to the size of the free spaces, i.e., voids between background
grains. To estimate the dielectric constant of a grain wrapped
by a layer of water, we used Maxwell-Garnett [44] mixing
equation [45]
€580

&s +2e0 f (e5€0)
where f = (vy)/(vs + v;) is the volume fraction of the solid
grain, &efr 1s the effective dielectric constant, g is the dielectric
constant of water, &5 is the dielectric constant of the grain, vy
is the volume of the grain, and v; is the value of the water
layer. It should be noted that unlike the dielectric constant of
the background, the dielectric constant of the larger grains,
i.e., scatterers, slightly increases because the thickness of the
water layer, which is related to the dimension of the free
spaces, is much smaller than the size of scatterers.

Fig. 2 shows the modeled interferometric phase and inten-
sity changes for different soil types as a function of r, and
fs [see (1) and (2)]. It can be seen that the intensity is
proportional to the volume geometric cross section, i.e., oy =
nrﬁ]\_fu, whereas the phase change is proportional to 1/0y.

geff = &0 + 3 feo (18)

B. Variable Soil Moisture Profile

Constant soil moisture profile has been assumed to derive
(1). This means that the attenuation and phase constants of
the soil are independent of depth. However, with variable soil
moisture profiles, the attenuation and phase constants become
functions of depth and we can rewrite (1) as

N
. Z 13
u= Zejsztl,ztz,lsiezfo cos(ﬁr)dZ
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Fig. 2. L-band soil moisture-induced SAR intensity changes and InSAR

phase changes for different soil structures and different soil moisture changes.

Fig. 3 shows the modeled SAR intensity and interferometric
phase over soil with different soil moisture profiles. The soil
is loam containing 1.5% gravel grains of the average radius of
2.5 cm. The soil moisture values at the surface are in the
range of 0-0.50 and linearly changes with depth until it
becomes 0.40 at depth 40 cm. In order to generate inter-
ferometric phases, we assume the master image to have a
variable soil moisture profile with a value of 0.10 at surface
and 0.40 at the depth 40 cm. The results show that the
depth-resolved and depth-averaged backscattered intensities
are almost equal when shallow depths hold large soil moisture.
Note that depth-resolved means a profile of variable soil
moisture whereas depth-averaged indicates a constant soil
moisture profile. However, by decreasing the soil moisture
values at shallow depths, the depth-averaged intensities take
larger values compared to the depth-resolved intensity. Similar
results can be seen in phase changes where a larger difference
between depth-resolved and depth-averaged phase changes can
be observed at smaller soil moisture values.

IV. DISCUSSION

There are two main steps in modeling soil moisture-induced
intensity and phase changes of a single-looked pixel on an
SAR image. The first step is to model the dielectric medium
(soil here) and the second step is to estimate the intensity
and phase changes due to changes in soil moisture. Most
of the models introduced so far model soil as a continuous
scattering medium [9], [10]. The models then use a cross
correlation between two soils with different soil moisture
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Fig. 3. L-band soil moisture-induced SAR intensity and phase changes for

uniform and variable soil moisture profiles.

values to estimate the phase change. The model introduced
in this article, however, differs in strategy from the previous
models in two ways. The first is that the model in this
article considers the soil to be a discrete dielectric medium.
The second lies in the approach we used to estimate the soil
moisture-induced intensity and phase changes. The previous
models aim to model the cross correlation between two single-
looked pixels. On the contrary, the model in this article is an
SAR-based model that directly quantifies SAR intensity of
a single-looked pixel as a function of soil moisture. It also
calculates the phase change of an SAR pixel as a function of
soil moisture.

A. Modeling Dielectric Medium (Soil)

Generally, there are two main approaches that can be used
to model a scattering object in order to estimate the phase
and intensity changes. The first approach is to consider the
scattering object as a collection of discrete scatterers embed-
ded in a dielectric medium. In this model, the contribution
of a single scatterer to the scattered signal is a function of
its size, position, and dielectric constant of the scatterer, and
the medium’s dielectric constant. The second approach is to
assume the scattering object as a continuous medium. The
total signal in the case of the continuous medium is expressed
as a coherent sum of correlation among pairs of infinitesimal
slabs along the vertical direction. This mathematically implies
that every infinitesimal particle of the entire soil profile acts
like a scattering object. The model neglects the influence of
the structure of the soil, i.e., the dimensions and distribution
of scatterers, on the scattered signal. However, as explained
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Fig. 4. Mie backscattering for different soil moisture values and different
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in Section II, the backscattering of a scatterer is a function
of its size [35]. Fig. 4 shows such a relationship between
grain size and Mie scattering cross section. The relationship
between a scatterer’s size and its backscattering, illustrated
in Figs. 1 and 4, indicates that the scatterers’ size should
be considered in the models. It also indicates that a small
grain’s contribution to the total signal is negligible compared
to the contribution of a larger grain in the models. However,
all grains, regardless of their sizes, equally contribute to
the absorption. This means that scattering is a function of
scatterer size and absorption is independent of it. Therefore,
considering these, we have modeled the soil as a collection of
discrete coarse scatterers embedded in an attenuating dielectric
medium.

B. Estimating Intensity and Phase Changes

Once the dielectric medium, i.e., soil, is modeled as a collec-
tion of scatterers, the soil moisture-induced intensity and phase
changes can be estimated by exploiting a model. Imagine
that n scatterers, i.e., aj1e/?11,a;2¢/712, ... aj ,e/?'n, are
within the single-looked pixel u#1 on the first image where
ay,; and ¢ ; are the amplitude and phase of the scattered
signal of the ith scatterer. Now, imagine that changes happened
in soil moisture. This in turn leads to the changes in the
amplitudes and phases of the scatterers. Therefore, for the
same pixel on the second image, the backscattering values
of the scatterers are ag,lej‘/’l‘,az,zej‘/’%z, ... ,ag,nej‘pzs". Now,
a model should be exploited to quantify phase change of the
single-looked pixel between the two SAR images due to soil
moisture change. The common approach in the literature has
been applying a cross correlation between the two scattering
objects, i.e., soil here. Therefore, the phase change can be
calculated by

ej¢2,i

n
#1,0 = arg E a,ia;——

eJPLi (20)

i=1

Note that SAR images are not generated in this approach
and phase change is estimated from two modeled scattering
objects by exploiting cross correlation. Cross correlation is a
common approach to estimate the interferometric phase in the
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multilooking process. However, the performance of cross cor-
relation applied in modeling scattering objects is different from
that of cross correlation conducted in multilooking processing
aiming to improve phase estimation. In multilooking process-
ing, the single-looked pixels in the multilooking window on
the first image are multiplied to the complex conjugate of the
equivalent single-looked pixels on the second image. Here,
however, cross correlation is conducted between the stable
point scatterers within the first single-looked pixel and the
point scatterers within the second single-looked pixel. This
means that the scatterers within the single-looked pixel on
the first image are multiplied to the complex conjugate of the
equivalent scatterers on the second image.

We argue here that applying cross correlation to model soil
moisture-induced phase changes causes phase artifacts. Since
the amplitudes of the equivalent single-looked pixels are mul-
tiplied [see (20)] using cross correlation in the multilooking
process, weaker pixels, i.e., pixels with smaller amplitude and
noises, have less influence on the estimated multilooked phase.
Thus, multilooking improves phase estimation by decreasing
the influence of weaker pixels. Unlike this, cross correlation,
however, can lead to biased phase estimations when it is
exploited for dielectric mediums, e.g., soil. Soil is a loosy
dielectric medium, and the phase of a scatterer increases by
increasing its depth, whereas its amplitude decreases at the
same time. In this case, weaker scatterers, i.e., deeper scatter-
ers with smaller amplitudes, are associated with larger phases.
This means that by applying cross correlation, scatterers with
larger phases have less influence on the estimated phase.
Since this effect increases by increasing soil moisture changes,
phase curves tend to saturate at higher soil moisture changes.
Saturated phase curves have been documented in previous
models [9], [10] in which cross correlation has been used to
model soil moisture-induced interferometric phase.

Another consequence is the nonzero closure phase for
single-looked pixels, which has been documented in the pre-
vious models [9], [10]. Note that the closure phase of single-
looked pixels is zero in observations. This effect is similar to
phase artifact in multilooking process and interested readers
are referred to Molan et al. [46] for more details about the
multilooking artifacts. We also notice that, in practice, unlike
the cross-correlation approach, we use SAR images to generate
interferograms since the signals of the single point scatterers
within the soil volume are not available separately.

In this article, instead of applying cross correlation, we first
model SAR pixel and then calculate the phase and intensity
changes between SAR images with different soil moisture
values. A single pixel on an SAR image is a vector summation
of the signals of single scatterers within the resolution cell

n
uj: E aj,,-ef‘/’f’i.

i=1

2y

Then, the interferometric phase of two single-looked pixels on
SAR images is simply calculated by subtracting the phase of
the first SAR image from the phase of the second image

n | ;
D iy a2iel P )

- 22
Z?:l al,iel(/’l,[ ( )

1,2 = @291 = arg (
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TABLE I
DATE (YYYY-MM-DD) OF THE SLC IMAGES
No. date No. date No. date

1 2007-07-05 7 2008-07-07 13 2010-05-28
2 2007-08-20 8 2009-01-07 14 2010-07-13
3 2007-11-20 9 2009-07-10 15 2010-08-28
4 2008-01-05 10 2009-10-10 16 2010-10-13
5 2008-04-06 11 2010-01-10 17 2011-02-28
6 2008-05-22 12 2010-04-12

Here, one may argue that a shallower scatterer with larger
amplitude contributes to an SAR pixel’s signal more than
a deeper scatterer with smaller amplitude, alike the afore-
mentioned case in cross correlation. However, it should be
noted that the influence of amplitude on the interferometric
phase between two acquisitions decreases because amplitude
appears in the denominator as well as the numerator of
the (22). On the other hand, as it can be seen in (20),
the counterbalancing of amplitude influence does not happen
in cross correlation. Instead, cross correlation increases the
influence of the amplitude by multiplying the amplitudes.

C. Negative Slope on SAR Intensity Curves

One of the features, which is occasionally observed on SAR
intensity curves, is an inverse relation between soil moisture
and backscatter for small soil moisture values, e.g., mv <
0.10. This phenomenon is thought to be due to a decrease in
the subsurface scattering and an increase in surface scattering
upon wetting [32], [32]. However, not all intensity curves
feature such a negative slope for small soil moisture values,
indicating that this may not the case. We argue that the
negative slope appears when the dielectric constant of the dry
background, e.g., silt, sand, and clay, is smaller than the dielec-
tric constant of point scatterers, e.g., gravel-sized grains. The
porous background has a smaller dielectric constant compared
to the individual larger soil particle due to the smaller dry bulk
density. As the background soil absorbs water, its dielectric
constant increases and gets closer to the dielectric constant
of the point scatterers, resulting in decreased backscatter at
their interface. The backscattering then increases upon more
wetting. Fig. 4 shows the Mie backscattering [see (11)] of
point scatters with a dielectric constant of 3.3 embedded in
a background with a dielectric constant of 2.5 at the dry
condition. As it can be observed on the plot, backscattering
decreases at first and then increases upon more wetting.

V. EVALUATION

To evaluate our model, we choose ALOS PALSAR data
over Idaho where in sifu soil moisture measurements are
available at the Orchard Range Soil Climate Analysis Net-
work (SCAN) station (https://www.wcc.nrcs.usda.gov/). Co-
registered single-looked complex (SLC) images are used to
generate multilooked interferograms with 6 and 3 looks in
azimuth and range, respectively. Table I provides the dates
of the SAR images. The path and frame numbers are 208 and
860, respectively. The topographic phase is simulated using
the DEM of Shuttle Radar Topography Mission (SRTM) with
1 arc-sec spatial resolution and is then removed from the
interferograms. After removing those interferograms with low
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Fig. 5. Modeled and observed interferometric phases at point (a) with a
grain size of 2.8 cm and volume fraction of 3.6%, and point (b) with a grain
size of 2.75 cm and volume fraction of 5.2%.

coherence over the soil moisture station, a total of 87 remain-
ing interferograms are selected. The perpendicular baseline of
the selected interferograms ranges between 12 and 1970 m,
and the maximum temporal baseline is 1196 days.

Fig. 5 illustrates the comparison between our model and
the model introduced by Zan et al. [10] with observed inter-
ferometric phases at two pixels around the station where soil
moisture measurements are available. The model introduced
in [10] has been used for soil moisture estimations and
later revised by Zwieback et al. [33] to accommodate depth
variable soil moisture cases. This model assumes the temporal
changes in soil moisture to be the primary influential factor.
Hence, it does not consider the influence of soil’s structure
on InSAR phase changes. Therefore, unlike our model, its
estimated phase for (a) and (b) cases (see Fig. 5) are the same
regardless of their different phase behaviors due to different
soil structures. In Fig. 6, the modeled intensity is compared
with the observed in tensity at two points (a) and (b). Also, in
Fig. 7, modeled intensity changes are compared with observed
intensity changes at points (a) and (b). The plots show that our
model is very successful in the estimation of InSAR phase
and SAR intensity. By fitting the modeled phase and intensity
values to the observed intensity and phase values (see Figs.
6 and 7), the grain sizes of 2.8 and 2.75 cm with volume
fractions of 3.6% and 5.2%, respectively for (a) and (b) are
estimated. The dielectric constant of the scatterers is also
estimated to be 2.7, and the maximum layer of water that
wraps larger grains is estimated to be 1.1 mm.

Volumetric Soil Moisture
Fig. 6. Modeled and observed SAR intensity.

Upon wetting, the replacement of air within free spaces of
soil by water increases the dielectric constant of the soil. The
increase in dielectric constant corresponds to an increase in the
wavenumber in the soil. This means that the wavefronts prop-
agating in the soil become closer as the soil becomes wetter.
However, soil moisture contribution to the final signal received
by antenna appertains more to soil structure. Generally, as the
density of scatters increases, the magnitude of scattered waves
at shallower depths increases, and relatively smaller portion
of the wave has the chance to reach deeper depths and gain
larger phase changes. This is because of a wave backscattered
by a scatterer at depth 10 cm, for instance, experiences twice
larger phase changes compared to a wave backscattered by a
scatterer located at depth of 5 cm in a homogeneous medium.
On this account, soil moisture-induced InSAR phase change
decreases by increasing the volume fraction and/or size of
the scatterers. At the same time, however, the backscattered
intensity increases as the volume fraction and/or size of the
scatterers increases. This fact can be observed in our model’s
results shown in Fig. 2 and also in Figs. 5 and 6, which feature
the comparison between real and modeled phase and intensity
changes. It can be seen that the intensity is proportional to the
volume geometric cross section whereas the phase change is
inversely proportional to it. In other words, pixels with smaller
volume geometric cross section are associated with larger
soil moisture-induced phase changes and smaller intensities.
Theoretically, a pixel can take large phases (e.g., 2 rad. and
even larger); however, in practice, such pixels are difficult to
study since the intensity gets closer to the noise equivalent
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Fig. 7.
signal zero (NESZ). Therefore, the largest detectable soil
moisture-induced phase changes are relevant to NESZ of the
data.

Three measurements exhibit very high values on intensity
plots (Fig. 6), indicating a strong change in the backscattering
property of the soil. The observed out-of-range values (Fig. 6)
are so high that even fully saturated soil could not generate
such a strong backscattering. Therefore, the mechanism that
leads to the high values of intensity could not be elucidated
considering soil moisture changes solely. Instead, we attribute
this to the change in the structure of soil due to freezing.
The weather record over the study area indicates that the soil
temperatures of the three measurements are below 0 °C. The
dielectric constant of ice, which is about 3.2, is very close
to the dielectric constant of soil particles. When soil freezes,
the pore ice bonds soil particle together, resulting in a larger
almost homogenous scatterer. The change in the structure of
the soil due to freezing decorrelates the backscattered signals
[26], leading to low coherence between frozen and nonfrozen
soils. In this case where the coherence is low, intensity changes
can be potentially used for analyzing the radar responses of
the frozen soil. However, we do not cover this issue in this
study as it is beyond the scope of this research.

Modeled and observed SAR intensity changes.

VI. CONCLUSION

Unlike previous models, which are only applicable for
either intensity or phase estimations, our volume scattering
model successfully estimates SAR intensity changes as well
as InSAR phase changes. Also, while previous interferometric
models provide phase changes due to soil moisture changes,
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they do not take into account the structure of the soil,
i.e., soil particle size and distribution. The model introduced
in this article models the soil as a discrete dielectric constant
medium with larger scatterers embedded within a finer grain
background of soil. It takes into account the scatterers’ sizes
and their volumetric fraction. This may open a new window
in the study of soil structure using SAR and InSAR methods.

The volume scattering models so far have been used along
with surface models to estimate soil moisture-induced SAR
intensity changes. Based on this hypothesis, the negative
slope on intensity curves is attributed to volume scattering,
which decreases by increasing the soil moisture. The volume
scattering model provided in this article, however, is successful
in estimating the SAR intensity changes.

The model in this article predicts the reverse relationship
between soil moisture changes and SAR intensity changes for
small soil moisture values. We attribute this to the difference
between the dielectric constants of dense point scatterers and
porous dry background.

The previous models lead to nonzero phase triplets for
single-focused pixels, which is zero in real world and also in
our model. This is because the models do not generate SAR
images and instead they apply a cross correlation to estimate
the phase changes from modeled pixels.
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