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Abstract: The discontinuous permafrost zone is one of the world’s most sensitive areas to climate
change. Alaskan boreal forest is underlain by discontinuous permafrost, and wildfires are one of the
most influential agents negatively impacting the condition of permafrost in the arctic region. Using
interferometric synthetic aperture radar (InSAR) of Advanced Land Observation Satellite (ALOS)
Phased Array type L-band Synthetic Aperture Radar (PALSAR) images, we mapped extensive
permafrost degradation over interior Alaskan boreal forest in Yukon Flats, induced by the 2009
Big Creek wildfire. Our analyses showed that fire-induced permafrost degradation in the second
post-fire thawing season contributed up to 20 cm of ground surface subsidence. We generated
post-fire deformation time series and introduced a model that exploited the deformation time series
to estimate fire-induced permafrost degradation and changes in active layer thickness. The model
showed a wildfire-induced increase of up to 80 cm in active layer thickness in the second post-fire year
due to pore-ice permafrost thawing. The model also showed up to 15 cm of permafrost degradation
due to excess-ice thawing with little or no increase in active layer thickness. The uncertainties of the
estimated change in active layer thickness and the thickness of thawed excess ice permafrost are 27.77
and 1.50 cm, respectively. Our results demonstrate that InSAR-derived deformation measurements
along with physics models are capable of quantifying fire-induced permafrost degradation in
Alaskan boreal forests underlain by discontinuous permafrost. Our results also have illustrated
that fire-induced increase of active layer thickness and excess ice thawing contributed to ground
surface subsidence.
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1. Introduction

Permafrost plays a significant role in landscape stability, carbon cycling, and socioeconomic
development, and is key to regulating biological, hydrological, geophysical, and biogeochemical
processes [1]. Roughly 37% of the Northern Hemisphere permafrost occurs in western North America,
mainly in Alaska and northern Canada, but also further south in the Rocky Mountains [2]. A huge
amount of carbon is stored in permafrost [3], roughly twice as large as the amount of carbon in
the atmosphere [4]; therefore, disturbance of the permafrost can significantly contribute to climate
change [3]. In addition, permafrost is structurally important, and its thawing has been known to cause
erosion, disappearance of lakes, landslides, and ground subsidence. The active layer, defined as the
top layer of ground in areas underlain by permafrost, plays a key role in land surface processes in
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cold regions and is subject to annual thawing and freezing and subsequent subsidence and uplift,
respectively [5].

Field surveys (including surface geophysical collections), model simulations, and remote sensing
observations are used to obtain regional variation of active layer thickness (ALT) [6]. ALT is usually
directly measured by using a metal rod inserted into the soil to measure the depth of thawing (e.g., [7]).
However, the measurement should be done at the end of the thawing season and, if possible, in
stone-free soils. Surface geophysical datasets as well as ground-penetrating radar data can also be
used to provide very high resolution and accurate estimates of ALT (e.g., [8]). Although ground-based
ALT measurements are accurate, they provide a spatially limited sampling of a parameter that has
significant spatial variability [9]. At regional scales, using empirical and statistical relationships,
ALT can be modeled at coarser spatial resolution by extrapolating ground-based measurements with
air temperature, ground temperature, elevation, and surface vegetation [10–13].

In contrast, remote sensing estimation of ALT usually uses Interferometric Synthetic Aperture
Radar (InSAR). Measurements to estimate ALT from seasonal ground deformation [14]. In the recent
years, a few attempts have been made to estimate and model ALT using InSAR this method eliminates
the need to define an empirical or statistical relationship with probing data [14]. InSAR provides
an all-weather, day-or-night capability to remotely sense mm–cm surface deformation with a high
spatial resolution of tens of meters or better (e.g., [15–19]). Able to collect Synthetic Aperture Radar
(SAR) images over a large-scale area, InSAR has proven very useful for deformation monitoring
over permafrost in Alaska (e.g., [9,20–24]). Liu et al. [21] applied InSAR using ERS-1 and -2 data
to monitor surface deformation near Prudhoe Bay on the Alaskan North Slope. They studied
long-term permafrost-related surface subsidence and argued that the seasonal subsidence and
long-term subsidence trends are due to thaw settlement of the active layer and thawing of ice-rich
permafrost near the permafrost table, respectively. Liu et al. [9] estimated the 1992–2000 average
ALT of the North Slope of Alaska from InSAR-derived surface subsidence by using the SAR images
for thaw season only. By comparing TerraSAR-X, RADARSAT-2, and ALOS PALSAR interferometry,
Short et al. [22] concluded that ALOS-PALSAR provides the most promising data for permafrost
degradation monitoring. Liu et al. [23] conducted InSAR time-series analysis using ALOS-PALSAR
data to detect seasonal thaw settlement in individual drained thermokarst lake basins. Liu et al. [24]
demonstrated the capability of using L-band PALSAR interferograms with short perpendicular
baselines to minimize the adverse effects of coherence loss, which made it possible to quantify
thermokarst. Liu et al. [25] conducted InSAR time series analysis using ALOS PALSAR data to
detect an increase in surface subsidence caused by Arctic tundra fire in a permafrost region of north
Alaska. Iwahana [26] investigated the northern part of the Anaktuvuk River fire scar with a two-path
differential InSAR technique and measured up to 6.2 cm/year post-fire subsidence within burned
tundra relative to surrounding off-scar tundra using three independent InSAR pairs of ALOS PALSAR
data. In addition to the use of InSAR to quantify fire-induced permafrost deformations (e.g., [26]), some
researchers have recently exploited LiDAR datasets to quantify permafrost degradation. Jones et al. [27],
for example, investigated the impact of the large and severe Anaktuvuk River tundra fire on potential,
post-fire thermokarst development using two airborne LiDAR datasets acquired two and seven years
after the fire.

Among remote sensing methods, optical methods provide the unique opportunity to map fire
scar and assess its severity. Spectral analysis of optical images can facilitate fire scar and severity
mapping [28,29]. Optical methods utilize the fire-induced changes in the spectral behavior of pre-
and post-fire vegetation over fire scar as well as the differences between the post-fire reflective
characteristics of vegetation and off-scar surrounding environment. So far, a number of indices for
burned area mapping, including differenced normalized burn ratio (dNBR) [28], relativized dNBR
(RdNBR), and relativized burn ratio (RBR) [29], have been developed.

The objective of this study is two-fold. First, we intend to demonstrate the capability of L-band
InSAR to monitor and quantify fire-induced permafrost deformations over interior Alaskan boreal
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forest. Second, we introduce a model for the fire-induced post-fire permafrost deformations. To this
end, we used L-band ALOS PALSAR data to map permafrost deformations over the Big Creek fire
scar, Alaska, and then introduced a model to estimate wildfire-induced changes in ALT, exploiting
InSAR-detected deformations in a time series over the fire scar. The InSAR-detected deformation is
then used to model fire-induced permafrost deformations in boreal forest. In boreal forest, wildfire
is one of the most important agents affecting permafrost. Since a huge amount of carbon is stored in
permafrost, the disturbance of the permafrost can significantly contribute to global climate change.
In addition, permafrost thawing has been known to cause erosion, disappearance of lakes, landslides,
and ground subsidence (e.g., [6,9,12]). In a study using airborne LiDAR, Jones et al. [29] assessed
fire-induced thermokarst development and concluded that in regions with ice-rich permafrost in the
Arctic, the impact of tundra fires for initiating widespread thermokarst development is greater than
what has been estimated to so far.

Our study area, which is underlain by discontinuous permafrost [30] and located in the Alaskan
Yukon River Basin, includes the 2009 Big Creek wildfire. The fire damaged ~686 km2 from 18 July
2009, to 18 August 2009 (Figure 1). The Alaskan Yukon River Basin is mainly composed of upland
and lowland evergreen forests, bottomland deciduous forest, emergent and herbaceous wetlands,
upland and lowland tundra, and alpine shrub [31] and is predominantly underlain by discontinuous
permafrost [30]. The near surface permafrost probability over the study area ranges from ~10% to
~70% [32]. The study area, a silty upland, was dominated by black spruce. Black spruce tends to be
underlain by permafrost [33] since black spruce stands generally contain a continuous insulating layer
of moss and lichens [34]. The area is in a region with low annual precipitation (about 170 mm) and
particularly strong variations in seasonal temperature. In Yukon Flats, the average daily temperatures
in winter and summer range from −34 ◦C to about −24 ◦C and from about 0 to about 22 ◦C,
respectively [35].
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densely populated by lakes and ponds. The background image of figure is a post-fire false color 
composite of Landsat ETM+ bands 7 (R), 4 (G), and 2 (B). 

Figure 1. The map of 2009 (red) and 2005 (yellow) wildfire perimeters in the study area (The Bureau of
Land Management Alaska Fire Service (http://afs.ak.blm.gov/)). The study area covered by paths
252 and 251 (ALOS) are boxed in cyan and green, respectively. Points P1, P2, P3, P4, P5, P6, P7, and
P8 are selected points to evaluate InSAR results. The reference point and the location of ground truth
measurements are shown by the cyan and green stars, respectively. The area in a green polygon is
densely populated by lakes and ponds. The background image of figure is a post-fire false color
composite of Landsat ETM+ bands 7 (R), 4 (G), and 2 (B).

http://afs.ak.blm.gov/
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First, we applied InSAR to measure ground surface deformations between interferometric pairs
ranging from September 2009 to March 2011. Then, using the small baseline subset (SBAS) method
(particularly, the TimeFun algorithm [36]), we inverted the measured InSAR phases to deformation time
series. Finally, we applied our model to estimate fire-induced changes in ALT using the deformation
time series. The rest of this paper is organized as follows. The InSAR analyses and results are provided
in Sections 2 and 3, respectively. In Section 4.1., we present our model and estimate wildfire-induced
changes in ALT. Validation of results and estimation of uncertainties are included in Section 4.2.,
followed by conclusions in Section 5.

2. Methods

SAR returns must be coherent to retrieve useful information from interferograms (e.g., [37]).
An InSAR coherence estimation image is a cross-correlation product of two co-registered
complex-valued SAR images [37], and loss of interferometric coherence is the major obstacle for
applying InSAR to monitor permafrost deformations in forested areas. InSAR coherence tends to
increase with radar wavelength due to the greater capability to penetrate vegetation cover or forest
canopy. For this reason, we employed L-band (23.6 cm wavelength) Japanese ALOS for InSAR analysis
in the study area, which is mostly forested and underlain by permafrost. However, our inspection of
InSAR coherence over the study area confirmed a strong fire-induced coherence loss that made us
unable to quantify surface deformations using interferograms pairing pre- and post-fire SAR images.
Figure 2 shows the ALOS coherence estimate between 17 July 2007 (pre-fire) and 06 September 2009
(post-fire) images. After the wildfire in 2009, the InSAR coherence decreased due to significant changes
on the vegetation cover resulting in altered scattering characteristics from ground surface. When
coherence was radically reduced to near zero values, we could not obtain useful information on the
ground deformation. However, the coherence map (Figure 2) itself still can help delineate the extent of
the fire scars.
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Figure 2. ALOS coherence estimate between 17 July 2007 and 6 September 2009 (path 252). Note near
zero values over the fire scare, which indicates complete loss of InSAR coherence.

Twelve HH polarized ALOS PALSAR single look complex (SLC) images, eight Fine Beam Single
polarization (FBS, 28 MHz bandwidth) and four Fine Beam Dual polarization (FBD 14 MHz bandwidth),
from September 2009 to March 2011 with radar look angle of 38.76◦ and slant range and azimuth pixel
sizes of 4.68 m (in SAR coordinates) and 3.13 m, respectively, were used in this study. First, assisted
by high-resolution (12 m) TanDEM-X DEM data, all SLC images have been co-registered based on
a single master image, which optimizes the geometric and temporal coherence of the interferogram
stack. The resampled SLC images were multi-looked by 6 and 14 in range and azimuth directions,
respectively, and then used to generate initial interferograms with ground pixel sizes of about 45 m.
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Then, flat earth and topography phase components from initial interferograms have been removed
using TanDEM-X DEM, and the interferograms were unwrapped using the Minimum Cost Flow (MCF)
method [38]. Also, atmospheric correction to remove stratified tropospheric artifacts that tend to
correlate with topography has been done on the interferograms by evaluating linear regression of
unwrapped phase with respect to height.

The InSAR method quantifies ground surface deformation, but the geometrical and temporal
decorrelations and atmospheric artifacts can affect the results. Over the last decade, a variety of SBAS
algorithms have been developed and successfully applied in various ground deformation monitoring
applications (e.g., [39]) aiming to generate deformation time series with artifacts removed. Generally,
small baseline differential interferograms are generated first and then time series analysis is conducted
(e.g., [40]). In this research, the TimeFun method, adapted from the Multiscale InSAR Time Series
(MInTS) algorithm [36] and implemented in the Generic InSAR Analysis Toolbox (GIAnT) [41], was
used to generate deformation time series. TimeFun adapts the same inversion strategy as that used in
MInTS, but it is implemented in the data domain [36,42]. Since it uses a singular value decomposition
(SVD) approach with a minimum-norm criterion, TimeFun is capable of inverting networks that are
not fully connected [42]. For every pixel with a coherence value above a user-specified threshold in all
interferograms, TimeFun inverts small-baseline interferometric phases into time series measurements.
This method is also applied to multi-looked interferograms to further reduce decorrelation noise.

3. Results

After careful inspection, 27 post-fire short baseline interferograms possessing relatively good
coherence were selected to generate time series of deformations using the TimeFun method.
The coherence, dependent on interferograms and ground futures, ranges from around 0.1–0.9. We used
pixels with coherence values greater than 0.7 to avoid possible unwrapping errors. Permafrost process,
especially post-fire surface dynamics, is complex in nature. Therefore, instead of using high order
polynomials, we used spline function, i.e., piecewise polynomials, defined for example in [43], to invert
the interferogram network to the time series. As permafrost thaws from top to bottom, due to the
change in the type of ground ice being thawed, i.e., pore-ice and/or excess-ice permafrost, temporarily
variable deformation rate can be detected by InSAR over permafrost. Regarding this complexity of
post-fire deformations over permafrost, spline function seems to be a proper pre-defined function
to invert the interferograms to time series deformation. However, this may make time series plots
look uneven. Figure 3 shows temporal and perpendicular baselines of the interferograms. Since only
one interferogram connects two clusters of the images, i.e., interferogram 12 of track 252, the quality
of the time series strongly depends on it. This indicates that all noise and artifacts present in the
interferogram will be propagated in the time series analysis. Moreover, because of the orbital drift
of the ALOS satellite, the perpendicular baseline generally increases in time (Figure 3). Therefore,
the topographic error that is proportional to the perpendicular baseline can possibly propagate in
our temporal analysis. However, because our study area is flat near the Yukon River Basin, and our
modeling scheme that will be presented later can cancel out the terms pertinent to the topographic
errors, those errors can be assumed to be negligible. Figure 4 illustrates, from each of the tracks, two
interferograms of the least connected images. The interferogram, i.e., interferogram 12 of track 252, as
well as the other three interferograms illustrated in Figure 4, demonstrates expected subsidence over
the fire scar. Figure 5 shows the post-fire deformation time series of path 252 where the deformations
are temporarily relative to 6 September 2009, and spatially relative to a reference point (cyan star in
Figure 1) that has been shown by field measurements [44] to be permafrost-free soil. As seen on the
images (Figure 5), the time series demonstrates larger subsidence over the burned areas (up to 20 cm)
compared to the deformation over the off-scar surrounding area (<5 cm). Generally, InSAR-detected
post-fire subsidence is expected to be larger over the burned areas compared to surrounding unburned
areas due to permafrost degradation and/or increased ALT as a consequence of wildfire-induced
organic layer removal and soil temperature warming.
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4. Discussion

Ground ice takes up about 9% more volume than groundwater in the unfrozen state. Therefore,
subsidence in summer and uplift in winter occur when the active layer thaws and freezes. This
repetitive pattern of ground subsidence and uplift, which can be recognized as the seasonal variations
of the ground surface, is typical in most permafrost regardless of human/natural perturbations
(i.e., deforestation, wildfire). Ground surface deformation over permafrost, detected by InSAR, can be
closely related to the volume changes of thawing/freezing ground ice in active layer [9]. Generally,
using InSAR-detected ground surface deformations, one can estimate ALT and change in ALT if the
soil characteristics (porosity, saturation) in active layer are well defined.

The winter freeze and summer thaw are completely natural in a permafrost region. However,
the extreme fire events in the shrub and forest-covered Alaskan region can degrade both the active
layer and underlying permafrost significantly. Wildfire can be triggered by natural processes and
human perturbation, but regardless of the cause of wildfires, the drastic changes on the ground surface
and underground soil formations induced by high heat can lead to irreversible consequences, such
as thawing of permafrost and alteration of the soil characteristics in the active layer. Because of its
low coherence, InSAR cannot measure the ground deformation through the comparison of pre- and
post-wildfire SAR acquisitions. However, InSAR during post-wildfire can maintain the appropriate
coherence, and we still can estimate the ground surface deformation that is closely related to the
permafrost degradation and changes in active layer. We cannot disregard the seasonal variation of the
movements of ground surface. Hence, we distinguished two major effects (seasonal and degradation
effects) in our time-series observation.

4.1. Modeling

To model the observed deformation of the study area, we considered a two-layer system of an
active layer and an underlying permafrost. The hypothesis is that due to a thinned insulating organic
layer and decreased surface albedo, downward heat transfer during post-fire thaw season (summer)
increases, leading to increased thaw depth of active layer. Due to the increased thaw depth, based on
the type of ground ice in permafrost, different deformation patterns may develop. If the ground ice in
permafrost occurs in the form of pore ice, increased thaw depth leads to greater seasonal deformations,
i.e., subsidence in summer and uplift in winter, without causing depression of the ground surface.
Note that pore ice is the ice fills in the pores of soil and does not include segregated ice. Pore ice, when
melting, does not generate water in excess of the pore volume of the soil in unfrozen condition [45].
On the other hand, permafrost contains excess ice, and ground ice melting due to increased thaw
depth generates meltwater in excess of the pore volume of the unfrozen soil. Excess ice is the volume
of ice in permafrost that exceeds the total pore volume of the unfrozen soil [45]. Therefore, due to
excess ice melting, long-term ground surface depression, which can be categorized as a consequence
of permafrost degradation, happens with no increase in seasonal deformations and measured ALT.
Note that ALT is usually measured from the soil surface down and not relative to the original soil
surface for the post-fire deformation measurements (e.g., [32]). In this way, an observer on the ground
may not notice the net subsidence of the surface, i.e., ground surface depression, due to thawing of
ice-rich permafrost or thawing of transition layer between permafrost and active layer. Therefore, ALT
measurements alone cannot show thawing of ice-rich permafrost [46]. Our model, however, estimates
the increase in ALT (Figure 6b) owing to thaw penetration into the pore ice permafrost as well as the
net ground surface depression (Figure 6a) due to thawing of excess ice (ice-rich) permafrost.
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Imagine pre-fire seasonal deformation and ALT to be δpre and ALTpre, respectively. In the first
post-fire summer, due to a thinned organic layer, increased downward heat transfer thaws excess ice
and/or pore ice permafrost with the thicknesses of Ti

1 and Tp
1 , respectively. The thickness of thawed

ice-rich permafrost, i.e., Ti
1, contributes totally to the subsidence, whereas the contribution of the

thawed pore ice permafrost to subsidence depends on the thawed permafrost’s thickness, soil porosity,
and saturation, as well as the densities of ice and water. By taking permafrost’s soil porosity to be
constant, its saturation to be 1.0, and the densities of ice and water to be constant, subsidence depends
only on the thickness of thawed pore ice permafrost and increases by increasing the thickness. In the
following equations, we try to formulate the relationship between thawed permafrost thickness and
InSAR-measured deformations. In the following equations, δ’ (primed δ) represents uplift, whereas δ

denotes subsidence. The subscripts 1 and 2 denote first and second year, respectively. Also, superscripts
p and i denote pore ice and excess ice permafrost, respectively. Therefore, we have

δ1 = δpre +∅ ρw − ρi
ρw

Tp
1 + Ti

1 (1)

where δ1 is the subsidence during the post-fire first year thawing season, Ø is the porosity of pore ice
permafrost’s soil, ρw is the density of water (1.0 g/cm3), ρi is the density of ice (0.917 g/cm3), Tp

1 is the
total thicknesses (cm) of thawed pore ice permafrost, and Ti

1 is the total thickness (cm) of the thawed
excess ice permafrost during the post-fire first thawing season. By the end of first thawing season, the
ALT, i.e., ALT1, increases by Tp

1 and becomes ALTpre + Tp
1 . The meltwater of the thawed excess ice

drains away and during the following winter, the new active layer freezes and heaves by

δ′1 = δpre +∅ ρw − ρi
ρw

Tp
1 (2)

where δ′1 is the post-fire uplift at the end of the first winter, calculated by subtracting the accumulated
deformation on 22 October 2009 from the accumulated deformation on 24 April 2010. In a similar
way, the post-fire second-year subsidence at the end of the thawing season and uplift at the end of the
freezing season can be expressed as

δ2 = δ′1 +∅ρw − ρi
ρw

Tp
2 + Ti

2 (3)

δ′2 = δ′1 +∅ ρw − ρi
ρw

Tp
2 (4)
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where δ2 is the subsidence at the end of the second thawing season, calculated by subtracting the
accumulated deformation on 25 October 2010 from the accumulated deformation on 24 April 2010,
δ′2 is the uplift at the end of the second freezing season, calculated by subtracting the accumulated
deformation on 25 October 2010 from the accumulated deformation on 12 March 2011, Tp

2 is the total
thicknesses of thawed pore ice permafrost, and Ti

2 is the total thickness of the thawed excess ice
permafrost during the second post-fire thawing season. Based on the air temperature measurements
in 2009 at Circumpolar Active Layer Monitoring Network (CALM) sites in or study area, i.e., Fort
Yukon and Circle sites (https://www2.gwu.edu/~calm/), the air temperature dropped to near zero
values at late September and early October. However, there is no soil temperature measured at these
sites. The air and soil temperature measurements at the SNOTEL site, Eagle Summit (960) (Natural
Water and Climate Center (https://wcc.sc.egov.usda.gov)), which is about 60 km away from the
study area, show more than one month phase delay between the air and soil temperatures. Air
temperature dropped to below zero values at mid-September and soil temperature remains above zero
until mid-December. In our study area, at Circle and Fort Yukon sites, the air temperature became
negative at the end of September (or early December). So, considering few weeks phase delay between
air and soil temperatures, we estimate soil freezing in our study area to occur no earlier than mid- or
late- October.

InSAR estimates δ′1, δ2, and δ′2. Therefore, the total thickness of the thawed excess ice permafrost
during the second post-fire thaw season can be calculated by subtracting Equation (4) from Equation (3).
Likewise, the total thicknesses of thawed pore ice permafrost during the second year can be calculated
by rewriting Equation (4)

Tp
2 =

δ′2 − δ′1
∅

ρw

ρw − ρi
(5)

Ti
2 = δ2 − δ′2 (6)

Our study area, located in the Yukon Flats, is underlain by more than 88 m of quiet-water silt and
silty sand, overlain by alluvial deposits [47]. An extensive mantle of eolian silt covers the marginal
upland bordering the Yukon Flats [48]. The loess, which covers the study area, is massive well-sorted
homogeneous unconsolidated tan to gray silt and sandy silt [47]. Therefore, we set Ø to be 0.46 (the
porosity of silt) and solved Equations 5 and 6. Figure 6 illustrates the total thickness of thawed excess
ice and pore ice permafrost during the second post-fire thaw season. Figure 6a illustrates up to 15 cm
depression due to excess ice permafrost degradation. Also, Figure 6b shows up to 80 cm increase in
ALT during the second post-fire year.

Here, the assumption is that the post-fire soil of thawed pore-ice permafrost is fully saturated.
However, this assumption may not be correct in cases where, for example, permafrost disappears
entirely and becomes permeable for meltwater. Also, the equations assume that the change in the
InSAR-detected organic layer deformation between the two post-fire following years, due to vegetation
regrowth and soil moisture, is negligible. The change in the volume of the seasonally segregated
ice between the first and second post-fire freezing seasons is assumed to be negligible. However,
this assumption may not be true. Yet the main limitation of the model is related to data availability.
Estimating seasonal deformations over a thawing/freezing season requires a connected network of
interferograms, spanning over the entire thawing/freezing season and covering soil thaw and freeze
onset dates. Sometimes, long repeat-pass periods and loss of coherence and/or other artifacts like
ionospheric effect reduce the number of available interferograms. In some cases, the available network
of interferograms partly covers the full season. In this case, to estimate full-season deformation using a
truncated interferogram network, the modified version of the Stefan equation (explained e.g., in [9,21])
can be used to approximate the depths of thaw and freeze as a function of time and temperature.

Generally, for time series purposes, InSAR measurements are always considered to be relative
to a reference point, which is assumed to have no or a predefined deformation time series. However,
selecting a reference point can be controversial, and if not properly selected, a non-stable reference

https://www2.gwu.edu/~calm/
https://wcc.sc.egov.usda.gov
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point will lead to biased measurements. Not that the bias initiated by using a reference point with
seasonal deformations can be completely cancelled out by our model if the reference point has equal
frost heave and thaw settlement in winter and summer, respectively. However, in the case of non-equal
seasonal deformations of the reference point, i.e., non-equal summer subsidence and winter uplift, the
model cannot fully prevent biased measurements.

4.2. Validation of InSAR Results and Estimation of Uncertainties

We selected interferograms with no ionospheric effects and the interferograms were flattened,
atmospheric correction was applied to remove stratified tropospheric artifacts, and topography phase
components have been removed using TanDEM-X DEM. Despite that, the measured InSAR phase may
still have contributions from troposphere, topography, ionosphere, DEM errors, etc. Note that the
estimated error in δ′2− δ′1 and δ2− δ′2, due to orbit drift are 0.04 and 0.27 cm. Also, the accuracy of phase
unwrapping influences directly the accuracy of InSAR estimations. This is the case especially over low
coherence pixels. So we carefully selected high coherence interferograms to avoid unwrapping error.

Here, we present the mean annual deformation velocity to visually inspect the deformations
and compare the deformations over fire scar with the deformations over off-scar surrounding areas.
Figure 7 presents the mean annual velocity map. Off-scar areas have less than 2-cm deformations,
which is most likely induced by ground surface processes over permafrost. Also, the study area is
almost flat and DEM-induced error is expected to be negligible.
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To further evaluate the InSAR results, we generated deformation time series using eight post-fire
SAR images from path 251, which overlaps path 252 and covers the fire scar. Then, the results of the
two independent time series from path 251 and 252 were compared by selecting eight points over the
burned area (Figure 1). Figure 8 shows the plots of deformation time series over the two paths. The
comparison showed good agreement between the results. Although points 2 and 3 (P251-2, P251-3,
P252-2, and P252-3 in Figure 8) are on the burned area, they have smaller subsidence than other points
on the burned area. This may indicate that underground permafrost was either absent or totally
destroyed during the first post-fire thawing season, or that the post-fire organic layer was thick enough
to keep the permafrost cool. This conclusion can be applied to all other points inside the burned area
with small subsidence.
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A careful inspection of the deformation time series demonstrated in Figure 5 and the model’s
results shown in Figure 6 reveals that the density of low coherence pixels, i.e., colorless pixels on
the images, is higher over the central and eastern part of the fire scar. Not surprisingly, the area is
dominated by lakes/ponds (Figure 1). This may infer that the area is more dynamic compared to the
rest of the study area and experiences surface processes that lead to the loss of coherence, which makes
InSAR measurements infeasible. The rest of the area, however, possesses relatively higher coherence
values. Over the higher coherence area (away from the lake/pond area), our model estimates up to a
15-cm ground level decline and up to an 80-cm increase in ALT.

Although there is no extensive ground truth data taken from the study area, we generally
compared our model’s results and limited field measurements in the study area taken from 2010
to 2012 [49]. Thaw depths have been measured from 2010 to 2012 along two 100–200-m transects
with different fire disturbance histories. Figure 1 shows the location of the sampling site, which is
unfortunately located in the low coherence area. The measurements showed that the wildfire-increased
ALT with most settlements happened during the first and second year after fire, and the permafrost
table was largely stabilized in the third year after fire [49]. From 2010 to 2012, ALT increased by an
average of 41 cm, with a maximum of 75 cm, and ground surface elevations declined on average by
9 cm, with a maximum of 39 cm, due to the degradation of ice-rich permafrost [49]. However, since
the sampling site falls in the low coherence area, which makes InSAR measurements infeasible, we
could only compare the results generally.

In general, the InSAR-estimated ground surface depression over the area away from lakes/ponds
is smaller than the ground surface elevation decline measured in the lake/pond dominated area. This
may indicate to us that the lake/pond dominated area is underlain by thicker excess ice permafrost.
Also, our model shows up to an 80- and 40-cm increase in ALT over the southern and northern parts
of the fire scare, respectively, during the first year after the fire. The estimated increase in ALT over
the northern part of the study area is in good agreement with the result of ground measurements,
i.e., a maximum of a 75-cm increase in ALT from 2010 to 2012 [49]. Since the thawing of excess ice
permafrost did not add to ALT whereas pore ice permafrost thawing increased ALT, we can infer that
the ground ice underlying the area away from the lakes/ponds, especially the southern part of the
study region, is dominated by pore ice permafrost. The large increases over the southern part, i.e., up
to 80 cm, indicate the likely formation of talik. However, no sample has been taken from the southern
part of the fire scar to allow us to evaluate the results.

Model uncertainty can be estimated by calculating the uncertainty of each parameter involved in
modeling and the sensitivity of the model to changes in the parameter, i.e., the adjoint relative to the
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parameter. By assuming that the parameters are affecting the model independently, the uncertainty of
the model was then calculated by (e.g., [21])

σmodel =

(
n

∑
k=1

(
∂M
∂Pk

σk

)2
)1/2

(7)

where σmodel is the uncertainty of the model, Pk denotes parameters, n is the number of parameters,
∂M
∂Pk

is the sensitivity of the model to the changes in parameter Pk, and σk represents uncertainty
of Pk. Table 1 represents the parameters involved in estimating the change in the ALT, their values,
uncertainties, relative contribution to the total uncertainty of the model, and cumulative uncertainties.

Table 1. Model’s parameters, the uncertainties of each parameter, cumulative uncertainty, and relative
contribution in the model for estimating changes in the ALT.

Parameter Value Parameter
Uncertainty

Cumulative
Uncertainty (cm)

Relative
Contribution (%)

δpost−up,2 − δpost−up,1 2.58 (cm) 0.97 (cm) 23.43 84.36
Porosity 0.46 ±0.10 27.06 13.09

Saturation 1.0 0.1 27.77 2.55

Equation 3 represents the parameters involved in estimating the changes in the ALT, i.e., Tp
2 .

The value for δ′2 − δ′1 was calculated by averaging the difference between the post-fire first and second
year seasonal uplifts over the fire-affected area. The uncertainty in the parameter is the standard
deviation of the difference between the post-fire first and second year seasonal uplifts over the off-scar
areas. Parameter S denotes the saturation of the soil that has been added to the active layer in the second
thawing season due to thawed pore ice permafrost. We assumed the soil to be fully saturated, S = 1.0.
Taking porosity to be a constant value is a source of uncertainty as it is a site-specific characteristic of
soil and should ideally be determined from in situ measurements at all InSAR pixels, thus we choose
0.1 of uncertainty in S. However, based on [47,48], we estimated the porosity, P, to be in a narrow
range around 0.46, i.e., 0.46 ± 0.10. The uncertainty in Ti

2, thawed excess ice permafrost, equals the
uncertainty of the parameter δ2 − δ′2. The uncertainty in the parameter is the standard deviation of the
difference between the post-fire second year seasonal subsidence and uplift over the off-scar areas,
i.e., 1.50 cm. Calculating standard deviation over the unburned area means that we have taken into
account the uncertainties due to other sources of noise and artifacts such as long-term deformation
trend, atmospheric artifacts, orbit drift, and residual orbital errors.

5. Conclusions

InSAR analyses using L-band ALOS PALSAR images have successfully mapped fire-induced
permafrost deformations in interior Alaskan boreal forest where loss of coherence is a major obstacle
for applying InSAR. The loss of coherence caused by wildfire was prominent within the burned area for
interferograms pairing both pre- and post-fire SAR images. Although the loss of coherence restricted
the total number of viable coherence pairs, by selecting only post-fire interferograms, we were able to
establish interferogram networks covering three post-fire freezing and thawing seasons (2009–2010 and
2010–2011 freezing seasons, and 2010 thawing season) and generate post-fire deformation time series.

Our analyses showed that the 2009 fire caused up to 20 cm of subsidence in the thawing season of
2010. The fire increased active layer thickness, which manifested as greater uplift over burned areas
compared to unburned areas. Although the permafrost process is complex, we used a simple model
that uses deformation time series to estimate fire-induced change in ALT as well as the thickness of
thawed excess ice permafrost. The model assumes that deformation happens because ground water
takes up to 9% less volume than ground ice.
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Our model revealed up to 15 cm of wildfire-induced excess ice permafrost thawing and up to an
80-cm increase in ALT. It can be seen on the map (Figures 5 and 6) that except for some local patches,
almost the entire burned area features ground surface subsidence due to ALT change. This indicates
that almost the entire area is underlain by pore ice permafrost. The thawing of excess ice permafrost
does not add to ALT, whereas pore ice permafrost thawing increases ALT and its seasonal deformations.
It should be noted that ALT is usually measured from the soil surface down and not relative to
the original soil surface (e.g., [32]). Therefore, we can infer that the area is dominated by pore ice
permafrost. Some areas underlain by both pore and excess ice permafrost, however, experienced
permafrost degradation in addition to ALT change.

A comparison between the results of path 252 and a neighboring track covering the burned area,
i.e., path 251, showed a good agreement between the results of the two paths. We also estimated the
uncertainty of the model by calculating the uncertainty of all parameters involved in the model. The
uncertainties in the estimated change in the ALT and the thickness of the thawed excess-ice permafrost
are 27.77 cm and 1.50 cm, respectively.

The introduced model can be used in other places to estimate fire-induced permafrost degradation
and ALT change. However, as discussed earlier in the paper, uncertainties are involved in the model
and affect the accuracy of estimated thicknesses. Therefore, pre-and post-fire extensive field sampling
in an area, if available, can calibrate the model and improve the results.
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