This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE GEOSCIENCE AND REMOTE SENSING LETTERS

Sequential Estimation of Dynamic Deformation
Parameters for SBAS-InSAR

Baohang Wang™, Chaoying Zhao

Abstract— The synthetic aperture radar (SAR) interferome-
try (InSAR) has been developed for more than 20 years for
historical surface deformation reconstruction. In particular, the
onboard Sentinel-1/A/B satellite, newly planned NASA-ISRO
SAR (NISAR), and Germany Tandem-L will continue to pro-
vide unprecedented SAR data with an increased number of
acquisitions. However, processing of real-time SAR data has
been experiencing challenges regarding the InSAR deformation
parameter estimation over a long time with the small baseline
subsets (SBAS) InSAR technology. We use sequential adjustment
for the estimation of the deformation parameters, which uses
Bayesian estimation theory under the least square criteria to
inverse long time-series deformation dynamically. Finally, both
simulated and real Sentinel-1A SAR data verify the performance
of the sequential estimation. It can be regarded as an effective
data processing tool in the coming era of SAR big data.

Index Terms—Bayesian estimation, dynamic deformation
parameter estimation, InSAR time-series, least square (LS),
sequential estimation.

I. INTRODUCTION

HE synthetic aperture radar (SAR) interferometry
T(InSAR) provides unprecedented tools for wide-range
deformation monitoring. However, the accuracy of the repeat-
pass InSAR depends considerably on the coherence of the
interferometric phases. To overcome the effect of decorre-
lation, the permanent scatterers (PS) [1] and small baseline
subsets (SBAS) techniques [2] have been developed for retriev-
ing the deformation history. For a more detailed comparison
among different time-series InNSAR methods, the readers can
refer to [3].
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Moreover, with the advancement of the SAR satellites,
the amount of the SAR data will continue to increase, and the
revisit time will continue to decrease, which will promote
the application of the SAR data in environment monitoring
and disaster mitigation. The national-scale surface deformation
monitoring in Italy and Germany was investigated [4], [5].
Accordingly, to improve the computational efficiency, the par-
allel computation strategy and the cloud-computing-based
approach have been introduced to the SBAS InSAR process-
ing [6], [7]. However, one problem that has arisen should be
overcome in the big SAR data era, that is, the dynamical
update of the deformation parameters without the loss of
precision of the estimated parameters, which can also increase
the computational efficiency of the SBAS InSAR processing.
Recently, semiautomatic identification of the active clusters
pixels method [8] and multi-baseline SAR interferograms-
based sequential filter method [9] were proposed for the PS
selection and noise reduction of phase.. Moreover, the Kalman
filter method was proposed for the deformation estimation
[10]. However, the inaccuracy of the prediction model leads
to the deviation of the results.

For the time-series deformation inversion of the
SBAS-InSAR technology, on one hand, all SAR data
are processed repeatedly once each new SAR data are
presented, which undoubtedly increases the computation
burden due to the inverse operation of the large matrix, while
most of the earlier deformation parameters are unchangeable
for each SBAS InSAR processing. On the other hand, if we
only inverse the deformation parameters with the fusion of
newly observed SAR image and partial previously processed
SAR images, the previous deformation results cannot be
precisely linked through cofactor matrix, which results in the
inconsistency of the deformation estimations.

Therefore, we will introduce a sequential adjustment to
the SBAS InSAR processing to estimate the deformation
parameters dynamically [11], [12], which can keep consistent
accuracy with the traditional SBAS method but with high com-
putation efficiency. To this end, the least square (LS) Bayesian
estimation theory [12] is used. Finally, the performance of the
new method is verified with both simulated and real Sentinel-1
SAR data.

II. SEQUENTIAL ESTIMATION

First, we use all SAR acquisitions to calculate the deforma-
tion time-series by the SBAS InSAR technique with single
SBAS subset interferograms. The cofactor matrixes of the
time-series deformation of each pixel are used to assess its
accuracy. In the second step, once we acquire new SAR
data, the former estimated deformation parameters and their
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cofactor matrixes rather than original unwrapped interfero-
grams are involved in sequential estimation to update the
deformation parameters as quickly as possible.

A. Deformation Rate and Digital Elevation Model Error
Estimation

After correcting the atmospheric artifacts, and orbital errors,
we first estimate the deformation rate and digital elevation
model (DEM) error from the unwrapped interferograms using
the following function model:
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where V, AH, and unw denote the deformation rate, DEM
error, and unwrapped interferometric phases, respectively.
A, R, and 0 denote the radar wavelength, sensor-to-target
distance, and incidence angle, respectively. BiL and 7; (i =
1,..., M) are the perpendicular baselines and temporal base-
lines between the master image and the ith image, respectively.
M is the number of interferograms constructed by the SBAS
InSAR processing. We can rewrite (1) in the matrix form as
follows:

Vi=AX—-L,P 2)

where Vi is the measurement noise, and P; is the weight
matrix. Then, the parameter X, that is, the deformation rate
and the DEM error, can be readily estimated with LS

X0 = (ATPiA) 'ATPI L,
Qxn = (ATPA;) ™ 3)

where X (1) indicates the first estimation of parameter X, and
Oy is its cofactor matrix. The superscript T stands for the
transpose of a matrix.

In the conventional SBAS InSAR processing, when we
acquire new SAR data, the design matrix A is reconstructed
by configuring all interferograms to estimate the parameters
again. On the contrary, we use the sequential estimation to
update the deformation parameters dynamically. We can write
its observational equation as follows:

Vo =AX% — L, P, “4)

where X indicates the second estimation of parameter X,
and L», Ay, V>, and P, are the new observations (unwrapped
interferograms related to the new SAR acquisition), design
matrix, measurement error, and weight matrix, respectively.
We take XV and Qya) as a prior information of the
parameter X @, Hence, V, and X @ obey the Gaussian
distribution and independent each other as follows:

Vo~ N(0,04P5 ")
xX® ~ N(Xl, (702 Qx(l))
Cov(V2, X?) =0 (5)
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where 002 is the unit weight variance.
According to the principle of classical LS Bayesian estima-
tion [12], it holds

VIPV, 4+ (x@ — xHT Q;(ll) (X® - xMy =min. (6)
The parameter X ® and its cofactor matrix Q x2 are updated
as follows [12]:
2 -1 T -lih-1 y( T
X® = (@, +ATP2A) (2, XV + ATP2Lo)
_ —1
Oxo = (@) +ATP2A) . @)

We run the above-mentioned procedure iteratively to obtain
the new parameters by considering the latest SAR acquisition.

B. Deformation Time-Series Estimation

After the DEM error is further corrected for the unwrapped
interferograms, we estimate the time-series deformation phases
using the following function model:

-1 1 0... 0 O O 01 Unwi
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o o0 0 .--- 0 -1 1 ON unwyy
——
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where ¢;(i = 1,..., N) denotes the deformation phase in the

line-of-sight (LOS) direction at the different SAR acquisition
date and N+1 is the number of SAR acquisitions. Note that the
deformation at the first SAR acquisition date is zero, that is,
oo = 0. To estimate the deformation time-series, the archived
SAR data modeled as (8) are rewritten in the same matrix form
as (2) with different parameters X and design matrix Aj. Then,
we can calculate the first estimation X! of the parameter X
and its cofactor matrix Qya) as shown in (3).

When we acquire new SAR image, unlike the conventional
SBAS InSAR constructs (8) and estimate deformation time-
series again, we use the sequential estimation to update the
deformation time-series dynamically by only considering the
unwrapped interferograms related to the new SAR image. New
measurement data are L, (unwrapped interferograms related
to the (N +2)th new SAR acquisition) with weight matrix P,
design matrixes Ay and B, and parameters X and Y. We can
write its observational equation as follows:

xX®
Vo=[Az B][ y |~L2. P ©)

Because Y has no prior information, the parameters X
and Y are estimated based on LS Bayesian estimation the-
ory [12] as follows [11]:
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where Q|y@.y denotes the cofactor matrix of the parameter
[X @ Y]T. In practice, to increase the computational effi-
ciency in (7) and (10), the inverse of two matrices (Q;(ll) +
~1
QX(I) + A2TP2A2 A2TP2A2
B'P>A, B'P,B
using the matrix inversion theory [11] as follows:

ATP,A5) and are simplified

(P + ATP,A) =P P AT (P £ATPTA) AT R

(11)
Thus, we can rewrite (7) as follows:
X@=xU 4,0,
Oxo = Qxmn —J:A20x0)
Lr=1L,—AxWM (12)

where X® and Q x@ are the updated parameter and its
cofactor matrix, respectively. J, is the gain matrix, in which
0 is the updated cofactor matrix with the newly presented
image as following:

J: = 0xnAl 0!

Q; =Py +A0xnA]. (13)
Then, we can rewrite (10) as follows:
[X@)} _[ XD 4 J(Ly — BY) }
Y B7Q;'B)"'BTQ; (L — A2 X))
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where [X @, Y] [X @ Y] is the estimated deformation time-
series, in which Y is the cumulative deformation for the new
SAR acquisition, and Q[ X2y is their cofactor matrix. Hence,
when the new SAR image is presented, (12) gives the final
solution of the deformation rate and the DEM error by the
sequential estimation, and (14) provides the deformation time-
series estimation. Accordingly, we can update the deformation
parameters as quickly as possible with these two equations.

The standard deviation (STD) of the estimated parameters
can be estimated by the following equation:

Oix@.y] = 00,/ Q[x@.y) (15)

where the standard error unit weight 6y can be estimated as

ViPVo + (XD —xMT g L (x®—x M)
5 x(M
o= (16)

M+ M, — N

where M| and M, are the number of original interferograms
and newly generated interferograms, respectively, and N is the
number of the estimated parameters.

As the noise of the unwrapped phase obeys the Gaussian
distribution, theoretical accuracy bound of the worst case in the
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Fig. 1. Time-series deformation derived by the conventional SBAS (SBAS)
and sequential estimation (ours) with three different deformation models. The
left column is noise-free, while the right one includes noise. The blue, green,
and red lines represent the true deformation, the deformation derived from
the conventional SBAS, and the sequential estimation, respectively. (a) and
(b) Linear model. (c) and (d) Exponential model. (e) and (f) Periodic model.

sequential estimation can be given with twice or three times
of the STD under different confidence intervals as

P(—20 < A <+420) =955%

P(=30 < A < +30) = 99.7%. (17)

III. EXPERIMENTAL TEST
A. Simulated Data

First, to demonstrate the sequential estimation, three defor-
mation models including linear model, exponential model, and
periodic model for one generic pixel are simulated. In total,
53 single look complex (SLC) images are considered, and
307 interferograms are constructed by setting the thresholds
for the spatial and temporal baselines. We assume the first
30 SLCs are archived data, and the sequential estimation is
carried out from the 31st SLC (May 28, 2017) to the 53rd
SLC (April 29, 2019) to estimate the deformation parameters
sequentially. Fig. 1 shows the three simulated deformation
models with and without noise, and the estimation of the
time-series deformation with the conventional SBAS and our
methods.

To evaluate the accuracy of the results, the STD of the
estimated parameters for both SBAS and sequential estimation
are 0.1, 0.7, and 1.5 mm for three deformation models with
noise levels N ~ (0,0.5), N ~ (0,2), and N ~ (0,4),
respectively, by 1000 random simulations. The results show
that the accuracy of the estimated parameters with our method
is the same as the SBAS method.

B. Real Data

We use 53 Sentinel-1A SAR data covering Xi’an, China,
to demonstrate the proposed algorithm. For a more detailed
description of the selection of coherent points, initial DEM
error estimation, and phase unwrapping in this InSAR pre-
processing, the readers can refer to [13]. The deformation rate
and the DEM error estimated by the sequential method are
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Fig. 2. Comparison of the deformation rate and DEM error derived by

the sequential estimation and conventional SBAS. (a) and (b) Deformation
rate and DEM error by the sequential estimation, respectively. (c) and (d)
Difference histograms of the deformation rate and DEM error between the
sequential estimation and the conventional SBAS, respectively.
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Fig. 3. Comparison of time-series deformation between the conventional

SBAS and ours for pixels A and B shown in Fig. 3. Green line: deformation
obtained from the conventional SBAS. Red line: result of our method.

shown in Fig. 2(a) and (b). The comparisons between the
sequential estimation and the conventional SBAS are shown
in Fig. 2(c) and (d), and it is shown that the result derived
from the sequential estimation is entirely consistent with the
conventional SBAS.

For the time series deformation, the pixel A is located in the
slow deformation region in Fig. 2(a), while pixel B is located
in the significant deformation region in Fig. 2(a), are analyzed
(Fig. 3). It reveals that time-series deformation from the two
methods is consistent as well.

Moreover, the cumulative time-series deformation from
May 28, 2017 to April 29, 2019 (30th to 53rd SLCs) by the
sequential estimation is shown in Fig. 4.

Qualitatively, Fig. 5 shows the histograms of the difference
between the sequential estimation and the conventional SBAS
from the whole scene, which verifies that the deformation
time-series of the two methods is consistent and the difference
between the two methods is negligible.
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Fig. 4. Cumulative time-series deformation maps by the sequential estimation
from May 28, 2017 to April 29, 2019 (the 30th SLC to the 53rd SLC
acquisition).
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Fig. 5. Histograms of the difference of time-series deformation between
the sequential estimation and the conventional SBAS from May 28, 2017 to
April 29, 2019.

IV. DISCUSSION

In theory, the sequential estimation is consistent with the
conventional SBAS-InSAR method under the singular value
decomposition (SVD) or LS criteria. The simulated different
deformation models, with different noise levels, and the real
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Fig. 6. Comparison of execution time by the conventional SBAS and the
sequential estimation from May 28, 2017 to April 29, 2019 (corresponding
to the 31st SLC to 53rd SLC acquisitions).

data verify that the sequential estimation can obtain the same
optimal solution as the SBAS-InSAR processing for the whole
unwrapped interferograms.

The advantage of the sequential estimation is that it can
improve the computational efficiency significantly, especially
for the massive SAR data processing, as it does not store
all historical observations to estimate the deformation for the
newly presented SAR image. Fig. 6 shows the execution time
for the calculation of 50 000 pixels by the conventional SBAS
and the sequential estimation methods. It shows that both
the SBAS and sequential estimation methods spend the same
time for the initialization of the deformation estimation with
30 SLC images. Afterward, the sequential estimation spends
a very short time and keeps constant for the update of time-
series deformation, while the SBAS method spends much more
time than the sequential estimation and increases the execution
time linearly with the increase of SAR data. The test was done
based on MATLAB R2015b software and an Intel Xeon CPU
E5-2640 v4 at the 2.40-GHz computer.

Besides, as for the application of the sequential estimation,
we should take some attention as follows. First, to avoid the
phase unwrapping errors caused by deformation gradient and
decorrelation, the spatiotemporal baseline thresholds should
be set with some a priori knowledge for the newly pre-
sented image and archived images to form new interferograms.
Second, the systematic errors arising from the atmospheric
effect and inaccurate baseline estimation should be corrected
in advance. Third, the gross error caused by the unwrapping
error should also be detected and mitigated. To this end,
the weighted iterative LS (IRLS) method [14] and the adap-
tive factor a [15] can be considered for the weight matrix
determination of P1 and P2.

V. CONCLUSION

We introduce the sequential estimation to the SBAS InSAR
procedure to update the deformation parameters as quickly as
possible. The sequential estimation is an effective tool for the

InSAR dynamic deformation parameter estimation as it does
not store massive unwrapped interferograms and solve the
inversion of a large matrix. Both simulated and real SAR
data demonstrate that this proposed method can get the defor-
mation results with the same accuracy as the conventional
SBAS-InSAR method. Therefore, this method can be expected
to be used in the era of big SAR data.
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