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Abstract—Isolating phase residuals due to inaccurate external
digital elevation model (DEM) is important in retrieval and
interpretation of deformation behavior from interferometric
synthetic aperture radar (InSAR) observations. Multitemporal
InSAR (MTInSAR), by taking DEM error as a parameter, can
make the isolation possible. However, due to the presence of
atmospheric artifacts in observations and improper deformation
model employed in the observation system, accurate retrieval
of DEM error cannot be guaranteed in current MTInSAR
techniques. Considering that the DEM error has a fixed spa-
tial pattern and its contribution to interferometric phase-only
changes with spatial baselines, we propose here a nonparametric
method that can estimate the DEM error in a more robust
way. To retrieve signals having a fixed spatial pattern from
unwrapped MTInSAR measurements, the independent compo-
nent analysis (ICA) is used. Experiments with synthetic and real
data sets indicate the proposed method is able to estimate DEM
error with no a priori information about deformation. Moreover,
experiments also show that the method can provide a more robust
estimation when the observed phase observations are affected by
atmospheric delays and/or the number of interferograms used is
limited.

Index Terms—Digital elevation model (DEM) error, inde-
pendent component analysis (ICA), interferometric synthetic
aperture radar (InSAR).

I. INTRODUCTION

D IFFERENTIAL interferometric synthetic aperture radar
(DInSAR) has been proven to measure ground move-

ment with centimeter-to-millimeter precision on the scale
of hundreds of kilometers at a spatial resolution of less
than tens of meters. Currently, DInSAR has routinely been
used to retrieve land surface deformation caused by either
natural or anthropogenic activities, such as earthquakes,
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volcanism, landslides, and exploitation of groundwater [1]–[4].
However, the accuracy of single-pair interferometry is con-
fined by several factors, i.e., spatial and temporal decorrela-
tion, atmospheric propagation delays, orbital inaccuracy, and
topographic errors. To mitigate these adverse effects, multi-
temporal InSAR (MTInSAR) methods have been developed
by leveraging an extensive archive of SAR acquisitions cov-
ering the same area, such as persistent scatterer (PS) [5]–[9]
and short baseline (SB) [10]–[15] techniques. PS techniques
directly work on wrapped phases to extract deformation infor-
mation from individual points with stable phase quality over
the entire observation period. In contrast, the short base-
line (SB) methods usually obtain displacement history from
the inversion of unwrapped interferograms with small spatial
and temporal baselines.
Before using either of these methods to retrieve displace-

ment history, the phase residual due to the digital elevation
model (DEM) error should be removed through a linear
relation to the spatial baseline of the interferogram. Obviously,
inaccurate estimation of DEM error can lead to unexpected
phase fluctuation in the interferogram and further distort
the retrieval of spatiotemporal behaviors of ground displace-
ment [10], [14], [16]. In the standard PS technique, DEM error
is jointly estimated along with the deformation velocity from
a wrapped phase difference between two PSs (i.e., arc) [5].
DEM error is also alternatively estimated based on the property
of low correlation in space [17], [18]. In SB techniques
[e.g., SB subset (SBAS)], DEM error is estimated together
with deformation parameters directly from unwrapped phases
at coherent points [10], [12], [16], [19]. More recently, alterna-
tive SB methods have been developed to estimate DEM error
by either parameterizing DEM error together with interval
velocities [14], [20] or implementing estimation after phase
vector inversion [16], [19]. Although these methods have
proved their performance in many applications, the estimation
based on a single point or arc is still vulnerable and cannot
guarantee accurate DEM error estimates in all cases. As dis-
cussed in previous studies [14], [16], [20], [21], the accuracy
of estimated DEM error can be affected by the baseline con-
figuration of selected interferograms, interferogram network
subsets, atmospheric artifacts, and the discrepancy between
modeled and real deformation signals. It is unlikely that
current parametric MTInSAR DEM error estimation methods
can avoid all these effects.
To tackle the aforementioned problems, we propose a non-

parametric MTInSAR estimator for retrieval of DEM error.
The rationale is rooted in the fact that DEM error has
a deterministic relationship with interferometric phase [22].
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Unlike other phase contributors (e.g., deformation, atmos-
pheric artifacts, and noise), DEM error has a fixed spatial
pattern which is independent with others in space [23]. Starting
from the unwrapped interferograms, the proposed estimator
can retrieve an accurate DEM error with three steps. In the first
step, the multi-temporal unwrapped interferograms are con-
verted to sequential phase vector in the time domain. Second,
the independent component analysis (ICA) is applied to
decompose the sequential interferogram stack into a collection
of spatial distribution functions and associated mixing matrix
by maximizing their mutual independence in space. The
advantage of using ICA is that it makes no assumption about
the spatial–temporal composition of geophysical signals in
interferograms and no a priori information (such as deforma-
tion model and atmospheric delays) is required to constrain the
decomposition. Finally, the component contributed by DEM
error is sufficiently identified by maximizing the correlation
between the corresponding mixing vector and spatial baselines
of sequential interferograms. The identified spatial function is
converted to the estimated DEM error map by using the least
squares (LS). Since the estimation is operated on a scene basis,
the map of topographic error for all points in the scene can
be simultaneously derived in an extremely efficient way.
The structure of this paper is organized as follows. Section II

briefly presents the principle of ICA. In Section III, the
nonparametric estimation of DEM error with ICA is described
in detail. Section IV verifies the performance of the proposed
method by comparing it with conventional methods based
on the synthetic data set. Section V is dedicated to the
application of the proposed method using a real data set
over Dangxiong, China. The conclusion and discussion are
addressed in Section VI.

II. INDEPENDENT COMPONENT ANALYSIS

ICA stems from a common assumption that the observed
signals can be expressed as a linear combination of statistically
independent components, which we refer to as sources. The
relationship between the observed signals and the independent
sources can be described by [24]

X = AS (1)

where X is the matrix of observed signals, in which columns
correspond to variables and rows correspond to different
observations in time series. S is the matrix of sources, where
each row represents an independent source. A is denoted as
mixing matrix in which each row determines the coefficients
of relative contribution of each source to the corresponding
row of the observed variable in X . As both A and S in (1)
are unknown, the equation is underdetermined, indicating extra
constraints are required to solve (1) [25]. For ICA, the unique
solution is derived by maximizing the mutual independence
of estimated sources, more specifically, maximizing non-
Gaussianity of sources. This assumption is made based on
the central limit theorem (CLT) that indicates the sum of
sufficient independent random variables with non-Gaussian
distributions tend to follow Gaussian distribution with the
increase of variable number. Therefore, a variable being more

non-Gaussian has a higher probability to be an independent
source. The non-Gaussianity can be quantitatively measured
by a number of variables with different properties, such as
kurtosis and negentropy. Kurtosis is a fourth-order cumulant
that describes the “tailedness” of the probability distribution.
For a Gaussian variable with the standard normal distribution,
its kurtosis value is three [23], [26]. The kurtosis value is
easy to calculate, but it is not a robust measurement due to
its sensitivity to outliers. Alternatively, negentropy is more
robust, which is estimated based on the information-theoretic
quantity of entropy that indicates the Gaussian variable has the
largest entropy. In fact, since the computation of negentropy is
difficult, a simpler approximation of negentropy is commonly
used to assess non-Gaussianity [26], [27].
As a blind source separation technique, ICA is capable

of decomposing the mixed signals into several linear and
additive components based on the higher statistical moments
and cumulants. Its potential has already been widely exploited
in remote sensing and geoscience fields, such as denoising
GRACE gravity data [28], unmixing hyperspectral satellite
images [29], filtering Global Positioning System (GPS) obser-
vations [30], and extraction of radiance from high-temperature
events (HTEs) time series [31]. Specifically, ICA has also
been applied in SAR image processing, including polarimetric
SAR (PolSAR) data classification [32], DEM generation [33],
and separation of atmospheric noise from InSAR data set [23].

III. NONPARAMETRIC MTINSAR ESTIMATOR

A. Time-Series Inversion

Given N + 1 SAR images, M interferometric pairs with
high coherence are selected. After phase correction for earth
curvature and topographic effect, the M differential interfero-
grams are unwrapped and calibrated with respect to a reference
point. To ease the following ICA decomposition, we invert
the M interferograms to N sequential phase maps [23]. The
time-series inversion has the advantage of reducing the size
of interferogram stack, improving the efficiency of following
ICA decomposition. Moreover, the inversion can decrease
the sensitivity of parameter estimation to interferogram net-
work [16], [21]. A pixel-by-pixel inversion function is defined
as follows:

δφ = Bφ (2)

where δφ = [δφ1, . . . , δφM ]T is denoted as the known vector
of unwrapped phase values of M differential interferograms,
φ = [φ1, . . . , φN ]T represents the unknown vector of phase
values of N sequential interferograms in time series, and B
is the design matrix to connect original interferograms and
sequential phase maps. If the M interferograms belong to a
single interferogram subset, (2) can be solved by LS

φ = (BT B)
−1
BT δφ. (3)

Unfortunately, it is common that the selected interferograms
belong to different subsets because of decorrelation effects,
leading to an underdetermined linear system. Although singu-
lar value decomposition (SVD) [10] and iteratively reweighted
LS (IRLS) [34] can provide a unique solution based on
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minimum norm of inverted parameters, the constraints’ lack
of physical meaning might break the linear relation between
topographic phase residual and spatial baseline, especially
when phase measurements are affected by atmospheric arti-
facts [21]. Therefore, as an alternative, when there are multiple
interferogram subsets, we implement LS in each subset inde-
pendently and combine the inverted interval interferograms
back together. The procedure is described as follows.
1) Identify the subsets of interferogram network.
2) In each subset, determine the number of epoch intervals

and build up the inversion model between the original
interferograms and the consecutive interval phases from
(2) and yield the solution by LS.

3) Repeat 2) for all subsets and combine the solutions into
a single matrix.

As a remark, during the inversion, the associated spatial
baseline for each consecutive epoch interval should be calcu-
lated as well.

B. Decomposition by ICA

After temporal inversion for all selected points, we decom-
pose the sequential interferogram stack into a collection of
statistically independent components by ICA. Due to the
characteristics of InSAR measurement, each unwrapped inter-
ferogram phase can be thought of as the linear mixture of
statistically independent sources, which can be expressed as

∅ j = ∅ j
defo + ∅ j

topo + ∅ j
atm + ∅ j

orb + ∅ j
noise (4)

where ∅ j is the unwrapped phase map of the j th sequential
interferogram, ∅ j

defo represents the phase component due to the
ground movement along the line-of-sight (LOS) direction in
the j th time interval, ∅ j

topo is denoted as the phase residual due

to topographic error, ∅ j
atm refers to as the phase component due

to variation of atmospheric delays, ∅ j
orb is the phase component

induced by orbital inaccuracy of SAR satellite, and ∅ j
noise

represents the processing noise. Phase residual map due to
topographic error ∅ j

topo is deterministic [22] and it can be
modeled by

∅ j
topo = b j hε, j = 1, 2, . . . , N

with

b j = 4π

λ

b j⊥
rsin(θ)

(5)

where b j⊥ represents the spatial baseline of the j th sequential
interferogram, λ is the radar wavelength, r is the slant range
between SAR sensor and ground surface, θ is the looking
angle, and hε represents the topographic error map, which
is assumed to be static during the whole SAR observation
period [10], [16], [19]. It can be deduced from (5), the spatial
pattern of topographic error in different time intervals is fixed
and the contributed phases are proportional to their perpendic-
ular baselines. This unique feature enables the separation of
DEM error from InSAR measurements through ICA by maxi-
mizing its spatial independence with other signals. To achieve
that, we treat all selected points in each sequential phase map

as column vector ∅. Considering N consecutive phase maps,
the matrix of mixed signals in (1) has the form as X =
[∅1, . . . ,∅N ]T . Meanwhile, we expect the matrix of sources
in (1) has the form as S = [S1, S2, . . . , Si , . . .]T , in which each
row represents a spatial distribution of independent sources.
X and S are linked by mixing matrix A, as shown in (1).
It should be noted that before the ICA decomposition, the
dimensionality of independent source matrix S is unknown.
In this paper, we utilize the FastICA algorithm [26], [35],

[36] to decompose the mixed-signal matrix X and yield the
unique solution of mixing matrix A and source matrix S.
The precursor steps before FastICA include centering and
whitening so that the columns of the matrix of mixed signals
are transformed into an orthogonal space with reduced noise
levels in the data set (see Appendix A). The centering is
achieved by subtracting the mean of each column of the
mixed-signal matrix X from the matrix itself. Then, the cen-
tered matrix is multiplied by a whitening matrix, which
is obtained by principal component analysis (PCA) decom-
position. The number of principal components retained is
related with the dimensionality of independent sources, which
is usually unknown in InSAR observation without a priori
information.
Here, we use optimal singular value hard threshold-

ing (SVHT) [37] to determine the number. The threshold is
yielded by

τ∗ = 2.858 · dmed (6)

where dmed is the median eigenvalue of the covariance matrix
of centered data in (A3). Thus, the number of principal
components retained k is determined by the number of the
eigenvalue in the covariance matrix that is larger than the
threshold τ∗

k = #(d j > τ∗), j = 1, 2, . . . , N (7)

where #(·) is the number of elements in (·).
After the preprocessing steps, the FastICA algorithm

employs a fixed-point iteration scheme to derive the con-
verged solution of mixing matrix A and source matrix S
by maximizing the spatial non-Gaussianity of sources. Each
mixing vector, which is a row of A, defines a projection of
the independent sources into the mixed signals. Each column
of A defines the relative contributions of the correspond-
ing source into N sequential interferograms. Considering k
independent sources derived, the relationship between the N
sequential interferograms and the independent sources can be
alternatively expressed as a sum of outer products, which is
given by

X =
k∑
i

a·i ⊗ si· (8)

where si· represents the spatial distribution of the i th indepen-
dent source given by the i th row of S, a·i represents the vector
of relative contribution of corresponding source si· given by
the i th column of A, ⊗ denotes the outer product. Equation (8)
describes how each spatial source is combined to contribute
to the total spatiotemporal InSAR data set.
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C. DEM Error Estimation

Following (7), once the sequential interferogram data set is
divided into k independent components and associated mixing
matrix, the source of DEM error can be identified, provided
that there is a priori information of the spatial distribution
function si . However, since the ICA decomposition is per-
formed in the orthogonal space through centering and whiten-
ing procedures, the sign and the magnitude of independent
components are ambiguous after decomposition [26]. It is
difficult to extract the source of interest directly by inspection
of the spatial distribution function. Alternatively, as the coef-
ficient of column vector a·i describes the relative contribution
of independent sources to each interferogram in the sequential
data set, given the linear relation between DEM error phase
residual and spatial baseline described in (5), the column
vector a·i corresponding to the independent component of
DEM errors can be described as a linear function of spatial
baseline of sequential interferograms. In this paper, for the
sake of computation efficiency and reliability, we propose two
steps to determine the independent component of interest.
In the first step, we identify the component of interest by
calculating the correlation coefficient between the column
vector of mixing matrix A and the spatial baseline for each
divided component, that is,

γi =
∑N

j=1 (a j i − a·i )(b j⊥ − b·⊥)√∑N
j=1 (a j i − a·i)2

∑N
j=1 (b j⊥ − b·⊥)

2
, i= 1, 2, . . . ,k

with

a·i = 1

N

N∑

j=1
a j i

b·⊥ = 1

N

N∑

j=1
b j⊥. (9)

The source component of DEM error, which is denoted as
the t th component, is expected to have the largest absolute
value of correlation coefficient

γt = max
i

{|γi |}, i= 1, 2, . . . ,k. (10)

Once the source of DEM error is initially determined,
the contribution of the source of DEM error into the sequential
interferogram stack can be expressed as

∅topo = a·t ⊗ st · (11)

Assuming hε is the unknown DEM error map for all
selected points in the radar scene, combining (5), (8), and (11),
we can derive

∅topo = b⊗hε = b⊗( f st ·) = (b f ) ⊗ st ·
with

b= [b1, . . . ,b j , . . . ,bN ] (12)

where f is the conversion coefficient between the vector for
spatial baseline factor b and the column vector a·t of identified
DEM error source, which can be estimated using LS

f = (bbT )−1baT·t . (13)

Fig. 1. Workflow of DEM error estimation by the proposed method.

Second, in order to test the statistical significance of com-
ponent extraction of DEM error, we employ an F test to
determine whether the elements of the selected row at · of
A are sufficiently correlated with spatial baselines and further
indicate the corresponding source is attributed to topographic
error. The F test is described as [38], [39]

F =
∑N

j=1 b2 f 2∑N
j=1 (a j t − b f )2

(N−1) (14)

where the F statistic follows the F-distribution with (1, N−1)
degrees of freedom. Given the significance level of α and
degrees of freedom, the critical value of the F-distribution
F1,N−1,α is calculated. If F < F1,N−1,α , it means that the
column vector of the selected components does not signifi-
cantly fit the linear relation with spatial baselines, leading to
a failed estimation of the spatial distribution of DEM error.
In this case, the number of principal components retained
in (7) is reevaluated by adding one. If F > F1,N−1,α ,
it indicates that the mixing vector of the selected component
is sufficiently correlated with spatial baselines regardless of
the presence of other confounding signals (e.g., deformation,
atmospheric artifacts, and orbital inaccuracy) and the deter-
mined component can be further converted to DEM error.
Combining (12) and (13), the unknown DEM error map is
obtained by

hε = f st · (15)

As a summary, Fig. 1 depicts the involved steps for the
whole proposed nonparametric DEM error estimation process.

IV. SYNTHETIC DATA TESTS

To evaluate the performance of the proposed DEM error
estimator, a set of simulation tests are conducted. During
these tests, a total of 23 SAR acquisitions from C-band
sensor with a wavelength of 5.62 cm are used, where the
spatial and temporal baseline information is retrieved from
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Fig. 2. (a) Network plot of selected interferograms. Simulated (b) linear,
(c) periodic, and (d) complex deformation models in time series.

real Envisat/ASAR data set (Frame 2925, Track 170) over
Los Angeles Basin, CA, USA. From the SAR images, we
select 250000 coherent points and generate 63 interferograms
with spatial and temporal baselines shorter than 245 m and
280 days, respectively. The network of selected interferograms
is shown in Fig. 2(a). We assume that the phase ramps
due to satellite orbital inaccuracy have been removed from
interferograms, which, in real cases, can be done by using the
method proposed in [40]. Thus, the signals considered in the
synthetic interferograms include ground deformation, DEM
error, atmospheric delays, and noise. For the sake of simplicity,
the spatial pattern of deformation is created by using the peak
function in MATLAB. Meanwhile, three kinds of deformation
behavior in time series are simulated, i.e., linear [Fig. 2(b)],
periodic [Fig. 2(c)], and complex ones [Fig. 2(d)]. The DEM
error map is produced by employing fractal surface with a
fractal dimension of three and the error values distribute from
−30 to 30 m. The atmospheric delays in each SAR acquisition
are generated with the fractal dimension of 2.2 with the
maximum delay value varying from 0 to 3.5 rad. In addition,
we add the thermal noise into the interferogram with a mean
of zero rad and a standard deviation (STD) of 0.1 rad. As an
example, Fig. 3 depicts the spatial pattern of one synthetic
interferogram.
To assess the effectiveness of the proposed method under

different conditions, we independently vary one factor while
fixing the effects of other simulated parameters. Moreover,
we compare the new method with three existing methods for
DEM error estimation, i.e., original SBAS [10], Fattahi’s [16],
and Samsonov’s methods [14]. The accuracy of estimated
DEM error is quantitively described by using the root-mean-
square error (RMSE) between estimated and simulated DEM
errors

hε
rmse =

√√√√ 1

Num

Num∑
i=1

(
hε
est − hε

true

)2 (16)

where hε
est and hε

true are the estimated and simulated DEM
error maps, respectively, and Num represents the number of
coherent points.

Fig. 3. Schematic realization of the generation of the synthetic interfero-
gram. (a) DEM error. (b) Deformation. (c) Atmospheric delay. (d) Thermal
noise. (e) Final synthetic interferogram after phase unwrapping (perpendicular
baseline 85 m and temporal baseline 280 days).

A. Effect of Deformation Models

We first identify the performance of the proposed DEM
error estimator with different deformation models. Three sets
of interferograms are created with different temporal behaviors
of surface displacement (i.e., linear, periodic, and complex).
Atmospheric delays with a maximum variation of 1.0 rad
are added into the synthetic interferograms. After the phase
unwrapping process, the DEM error is estimated by four
methods (i.e., original SBAS, Samsonov’s, Fattahi’s, and the
proposed methods). The results are shown in Fig. 4. It can
be seen that when the simulated deformation behavior is
linear, the four methods obtain consistent results with the
simulated values. This is because the simple displacement time
series can be well described by the cubic polynomial in [10]
and [16] and the phase interval velocities in [14]. On the other
hand, when the simulated deformation behavior is periodic,
estimation results from the original SBAS, Fattahi’s, and
Samsonov’s methods have discrepancies with the simulated
DEM error map. These differences become more obvious
when the simulated deformation behavior is complex. The
estimation error in the conventional methods occurs mainly
due to a discrepancy between the real deformation and the
models used. By contrast, the proposed method gives a stable
and satisfactory estimation of DEM error regardless of the
temporal behavior of deformation, indicating the proposed
method is insensitive to the unknown fluctuation of displace-
ments in time series.

B. Effect of Atmospheric Artifacts
We also consider the effects of atmospheric delays on the

proposed estimator in different deformation scenarios. To eval-
uate the effects, in each deformation scenario, atmospheric
delays with eight levels of maximum variation are added into
the synthetic interferograms with the same level of DEM error
and thermal noise. We conduct the estimation and calculate
RMSE between the estimated and simulated DEM errors.
Fig. 5 shows the comparison of RMSE variation derived by
four methods. As expected, in all deformation scenarios, the
proposed method has the lowest RMSE with the increase
in the atmospheric delay level. Compared with conventional
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Fig. 4. Effect of simulated deformation input on DEM error estimation by four methods. The first three rows represent the estimated DEM error by four
methods when simulated deformation models are (a)–(d) linear, (e)–(h) periodic, and (i)–(l) complex, respectively. The fourth row shows the error histograms
between simulated and estimated DEM errors. In (p), three histogram curves (i.e., red, green, and blue lines) have overlapped each other, indicating that the
proposed approach is almost immune to the bias raised by improper deformation model. (m)–(p) Fourth row shows the error histograms between simulated
and estimated DEM errors.

methods, the proposed method has the lowest sensitivity to the
atmospheric contamination.

C. Effect of Maximum Spatial Baseline

To further assess the sensitivity of the maximum spatial
baseline to DEM error estimation, we scale the spatial base-
lines of selected interferograms by varying the coefficient
from 0.1 to 2. Based on the scaled baselines, we generate
20 sets of interferograms, where each data set contains the
same level of DEM error, deformation, atmospheric delays,
and thermal noise. We use four methods to retrieve the map of
DEM error from the unwrapped interferograms and calculate
RMSE as the function of a maximum spatial baseline of each
data set. As shown in Fig. 6, the RMSEs of estimated DEM

error decrease with the increase in the maximum value of
spatial baseline, suggesting that the use of large baselines
can improve the accuracy of estimated DEM errors. On the
other hand, the tendency of future satellites with shorter spatial
baselines imposes a challenge on the accuracy of DEM error
estimation. The results of the proposed method suggest despite
the maximum spatial baseline of 50 m, the RMSE can reach
up to 2 m, providing a possible solution of the DEM error
estimation for the further satellite missions.

D. Effect of Interferogram Number and Subset

We finally test the effects of interferogram number and
subset on the DEM error estimation. As described in [21],
more interferograms mean more observations, which can
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Fig. 5. Effect of atmospheric delays on DEM error estimation by four
methods with three deformation inputs. Deformation models are (a) linear,
(b) periodic, and (c) complex ones, respectively.

improve the accuracy of DEM error estimation. The existence
of subsets might lead to a biased estimation, especially when
the phase observations include unmodeled displacement and
atmospheric delays in time series. To assess the impacts,
we extend the thresholds of spatial and temporal baselines
to 350 m and 350 days, respectively, and generate 106
interferometric pairs. The same level of DEM error, defor-
mation, atmospheric delays, and thermal noise are converted
to phase components and added into the interferograms.
We then randomly select interferograms with the selection
number ranging from 10 to 105. For each selection number,
there are theoretically various combinations; we repeat the
selection 100 times without replacement. The DEM error map
and the RMSE value are computed based on the selected
interferograms. The mean value of RMSE for each selection
number represents the overall estimation sensitivity to the
number of interferograms, whereas the STD of RMSE for
each selection number reflects the stability of the algorithm
to interferogram configuration (i.e., subset and baseline distri-
butions). The effects of the interferogram number and subset
are illustrated in Fig. 7, where the mean and STD values of
RMSE are plotted as the functions of the sampling number,

Fig. 6. Effects of spatial baseline threshold on DEM error estimation by four
methods with three deformation inputs. Deformation models are (a) linear,
(b) periodic, and (c) complex ones, respectively.

respectively. As shown in Fig. 7 (Left) and (Right), when
the selection number is small, the mean and STD values of
RMSE significantly decrease with increase in the number of
interferograms, demonstrating the estimation of DEM errors
is affected by the number of observations. While when the
sampling number is large, the RMSEs from the four methods
flatten out gradually. In particular, the convergence speed
of the new method is the fastest among the four methods,
and the mean and STD values of RMSE are the lowest
when deformation has periodic or complex characteristics.
The test demonstrates that in the case of a small number of
interferograms or interferogram subsets, the proposed method
is notably superior to the existing methods.
In short summary, we have assessed the performance of the

new method and compared it with the existing methods under
various environments. The factors we have considered include
deformation model, atmospheric contamination, maximum of
baseline, and interferogram configuration. The results from
synthetic tests reveal that the new method provides a more
robust way to estimate the DEM error when the observations
suffer the aforementioned effects. To explain the phenomena,
conventional methods estimate DEM error from a single point
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Fig. 7. Effect of interferogram number and subset on DEM error estimation
by four methods with three deformation inputs. (Left) The variation in average
RMSE between estimated and simulated DEM error by four methods. (Right)
The STD of RMSE. Deformation models are (a) and (b) linear, (c) and (d)
periodic, and (e) and (f) complex ones, respectively.

Fig. 8. Shaded-relief map of the study area over Dangxiong, China. Blue
solid box: the study area covered by ascending ALOS/PALSAR images (Track
500, Frame 580). The insert map shows the location of the study area in China.

in one dimension, which are more prone to the unexpected
phase fluctuations (e.g., unmodeled deformation, atmospheric
delay, and network connectivity). However, the new method
directly extracts the map of DEM error from the sequen-
tial interferogram stack in 2-D space, which operates based
on two reasonable assumptions that DEM error is spatially
independent with other signals and the induced phase resid-
ual in interferograms only varies with the spatial baselines.
By considering the 2-D independence and high correlation
with spatial baseline, our estimator is much less vulnerable
to the signal fluctuation.

V. REAL DATA TEST
To test the algorithm with real data, processing is con-

ducted using data acquired over Dangxiong, China from
December 29, 2006 to January 6, 2010 (Fig. 8). A set of nine

TABLE I

INTERFEROMETRIC PAIR BASELINE INFORMATION

Fig. 9. Wrapped interferograms before correcting DEM error.

ALOS/PALSAR images is used to generate 11 interferograms
with the temporal and spatial baselines less than 830 days and
550 m, respectively (see Table I). During the InSAR process-
ing, 1-arc-s ASTER GDEM is used to remove the topographic
phase. Accounting for the effects of layover and shadow in
mountainous areas, pixels in interferograms suffering from
geometric distortions are detected and eliminated.
Fig. 9 shows the interferograms before DEM error cor-

rection. Although ASTER GDEM has a vertical accuracy
of 15 m in mountainous areas [41], the DEM error in this
area is still apparent, hampering the extraction of deformation
pattern. After the DEM error correction by using the developed
algorithm, the corrected interferograms are shown in Fig. 10.
We can see that the phase residual caused by DEM error
has been effectively removed. The spatial pattern of the
landslide can be identified from the refined interferograms
(i.e., the areas in red), benefiting the further interpretation of
landslide displacement behavior.
To further demonstrate the stability of our approach in the

presence of atmospheric delays, we apply the proposed method
to estimate DEM error from interferograms before and after
correcting height-dependent atmospheric delays, respectively,
and compare the results with the estimation from the conven-
tional methods (i.e., SBAS, Fattahi’s method, and Samsonov’s
method). To remove the height-dependent tropospheric delays,
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Fig. 10. Wrapped interferograms after correcting DEM error.

Fig. 11. Comparison of estimated DEM error before and after height-
dependent atmospheric delays correction by four methods.

we fit a linear relationship between the unwrapped phase
and the local elevation [42]. Fig. 11 presents the comparison
of estimated DEM error before and after height-dependent
atmospheric delays correction. It is clear that the proposed
method can derive stable results despite atmospheric delays,
suggesting that the developed method is robust to atmospheric
contamination.
From a point view of computation load, since our method

directly extracts the spatial pattern of DEM error, the estima-
tion and correction are more efficient for interferogram stacks.
More impressively, the performance of the proposed estimator
is still satisfied when the number of available interferograms
is small. In this real data case, it only takes 4.9 s to obtain the
DEM error map from 957982 points in 11 ALOS/PALSAR

interferograms using MATLAB software with an Intel i7
3.6-GHz CPU.

VI. CONCLUSION AND DISCUSSION

In this paper, we have presented a new DEM error estima-
tion method for MTInSAR data sets. This method uses ICA
to retrieve independent components of DEM error from the
sequential interferograms and perform estimation in a spatial
domain. This distinguishes the estimator from the existing
methods that derive the parameters of interest based on pixel-
by-pixel or arc-by-arc estimation. Distinct advantages of this
method are that no a priori information of a deformation
model in time series is required, and it is largely immune
to atmospheric contamination and limitations in baseline con-
figuration.
Results of extensive tests using both synthetic and real data

sets have shown that this method works well under various
situations and provides more stable and accurate estimation
results compared with the existing approaches. Accurate sep-
aration of DEM error provides a solid basis for subsequent
retrieval of deformation time series in MTInSAR.
It should be pointed out that although ICA can be applied to

decompose multitemporal interferograms, the specific decom-
position based on mutual independence could fail in some
situations. The failure could be attributed to a small number
of observations in space or the existence of high-level noise
and outliers in observations [26]. Therefore, future work will
focus on how to improve the estimation performance in areas
with sparse coherent points and possible phase unwrapping
errors due to decorrelation.

APPENDIX

This appendix is dedicated to a more detailed description of
the FastICA algorithm, including preprocessing and decom-
position, and its application to sequential interferograms.
We refer the reader to the survey of FastICA [26], [35], [36] for
a deeper understanding. Provided that the observation matrix
X is formed by N sequential interferograms, the centered
observation matrix XC is calculated by

XC = X − X (A1)

where X is a matrix in which each column equals the mean
of the corresponding column in X so that each column of the
centered matrix XC has a zero-mean value. In order to whiten
the observation matrix, the centered matrix is used to generate
the covariance matrix C X as

C X = 1

N
XCXT

C (A2)

where N is the number of the sequential interferograms. The
covariance matrix is then decomposed by maximizing a total
variance of the projection based on PCA

C X = EDET =
N∑
j=1

d j · e j · eTj (A3)

where e and E are the eigenvector and eigenvector matrix, and
d and D are eigenvalue and eigenvalue matrix, respectively.
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The whitening matrix is calculated by

Q = (ED−1/2ET )k (A4)

where k is the number of retained principal components.
In this paper, we use SVHT [37] to determine the number.
The whitened observation matrix Z is derived by

Z = QXC . (A5)

Once the observation matrix has been centered and whitened,
the FastICA algorithm uses a fixed-point iteration to derive
the source matrix and mixing matrix by maximizing spatial
non-Gaussian of sources

Z = ÃS̃ (A6)

where Ã and S̃ are the mixing matrix and the source matrix of
centered and whitened observations, respectively. The centered
observation matrix can also be expressed as a combination of
source matrix and mixing matrix by using the inverse operation
of whitening process

XC = Q+ ÃS̃ = AS̃

with

A = Q+ Ã (A7)

where Q+ is the pseudoinverse of whitening matrix Q. The
original observation matrix can be expressed as

X = AS̃+ AA−1X = A(S̃+ A−1X) = AS

with

S = S̃+ A−1X (A8)

where A and S are the mixing matrix and the source matrix
of the original observation matrix, respectively.
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