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ABSTRACT
During the Small Baseline Subsets (SBAS) InSAR processing, the interferograms are often
separated into multiple independent subsets, which results inevitably in a rank deficiency
problem. Singular value decomposition (SVD) or linear interpolation based least squares (LS) is
generally adopted, which causes systematically biased deformation estimation. Therefore, we
presents a constrained SBAS method, which takes the period of the time series deformation
detected by frequency-spectrum analysis as constraints to solve the rank deficiency problem.
This method is illustrated with simulated data in detail. The results of the SVD, LS and our
methods are in agreement with the true value in the first subset, but biased in the second
subset with the magnitudes of 17.39 cm, 15.90 cm and -0.53 cm, respectively, where our
method is the best one. Lastly, the new method is successfully verified using the real SAR data
over Southern California from 2003 to 2006. The averaged STD of the differences between our
method and GPS observations in four stations are 5.0, 3.62, 6.31 and 5.87 mm/year, respec-
tively, which is much better than those from SVD and LS methods. This outcome confirms the
validity of the newly proposed method.
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Introduction

To mitigate the temporal and/or spatial decorrelation
and atmospheric effects (Zebker, Rosen, & Hensley,
1997; Zebker & Villasenor, 1992), various types of
advanced Interferometric Synthetic Aperture Radar
(InSAR) algorithms based on multi-interferograms
have been proposed. The typical three categories are
Permanent Scatterers InSAR (PS-InSAR) (Ferretti,
Prati, & Rocca, 2000, 2001; Hooper, Segall, & Zebker,
2007; Kampes, 2006), Small Baseline Subsets (SBAS)
InSAR (Berardino, Fornaro, Lanari, & Sansosti, 2002;
Lanari et al., 2004a; Lauknes, Zebker, & Larsen, 2010),
and SqueeSAR (Ferretti et al., 2011). PS-InSAR deals
with single-master interferograms, whereas multiple-
master interferograms are formed in SBAS-InSAR by
setting spatial and temporal baseline thresholds, which
has enabled wide applications in earth-science studies
and engineering-oriented applications such as land
subsidence (e.g. Del Ventisette et al., 2013; Deng
et al., 2016; Hu, Li, Ding, Zhu, & Sun, 2013; Kim, Lu,
Jia, & Shum, 2015) and landslides (e.g. Tong &
Schmidt, 2016; Zhao, Kang, Zhang, Lu, & Li, 2018;
Zhao, Lu, Zhang, & de La Fuente, 2012; Zhao et al.,
2016, 2013).

As for SBAS-InSAR, least squares (LS) are
applied to all unwrapped interferograms when
only one small baseline subset is available and
the cumulative time series deformation can be

readily retrieved (Berardino et al., 2002; Usai,
2003). However, if the available SAR acquisitions
are distributed within different subsets, an issue
of rank deficiency arises in the following cases: (i)
No SAR acquisitions are available that cover
a certain period. For example, the ERS-1SAR
images were available from May 1992 to
August 1993, whereas the Envisat ASAR images
were available from August 2003 to October 2010
in Taiyuan, Shanxi Province, China. No SAR data
were available between August 1993 and
August 2003 (Liu, Zhao, Zhang, Yang, & Zhang,
2018). (ii) Some interferometric pairs cannot meet
the given spatial and temporal baseline thresholds.
For example, the orbit of ALOS PALSAR-1 satel-
lite experienced a jump in May and June 2008,
causing the spatial baseline of the interferograms
to exceed the threshold; thus the isolated subsets
(i.e. no overlap in the time domain) cannot be
connected (e.g. Sun, Hu, Zhang, & Ding, 2016;
Zhao et al., 2012). (iii) Multi-sensor data such as
ERS and Envisat ASAR data are involved
(Bonano, Manunta, Marsella, & Lanari, 2012; Del
Ventisette et al., 2013; Pepe, Sansosti, Berardino,
& Lanari, 2005). Because of the different imaging
geometries, the SAR images from different sensors
cannot form interferograms. (iv) Low coherence
and phase unwrapping errors also cause the
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disconnection of interferograms in some pixels.
Thus, least squares (LS) method cannot be used
to derive the entire time series deformation cor-
rectly when the subsets of interferograms are large
than one. Typically, the singular value decompo-
sition (SVD) method is adopted to connect such
interferograms to obtain a unique solution and to
increase the deformation time series, which in
essence applies the minimum-norm constraint on
the corrections of deformation phases or velocities
between the adjacent SAR acquisitions. However,
the solution is just a mathematical meaning with-
out any physical meaning (Berardino et al., 2002;
Xu, 1997; Xu, Shimada, Fujii, & Tanaka, 2000).
That is, the bias between each subset is mean-
ingless. To overcome the weakness of the SVD
method, Usai (2003) addressed this problem by
interpolating the disconnected subsets, which is
equivalent to imposing a tight constraint on the
deformation between the independent subsets and
to obtain the LS solution. But, this solution may
lead to large discontinuities in the final result if
the constructed “missing” interferogram does not
match the reality. Hu et al. (2013) proposed
a method to add manually an additional good-
quality interferometric pair between the acquisi-
tions from different subsets to obtain a unique
solution. However, it seems difficult to find such
high-quality interferograms if the SAR images are
not dense enough. López-Quiroz, Doin, Tupin,
Briole, and Nicolas (2009), Deng et al. (2016)
and Zhang et al. (2019) proposed some polyno-
mial models in the time domain as constraints to
connect the SAR data acquired from single or
multiple platforms, where the final time series
results are highly dependent on the given poly-
nomial models. The bias can hardly be avoided if
the polynomial model does not accord with the
surface deformation. Samsonov and d’Oreye
(2012) applied the Tikhonov regularization or
low-pass filtering to overcome the rank deficiency
caused by multi-sensor datasets, which also lead
to the biased result due to the nature of the
regularization method. Pepe, Bonano, Zhao,
Yang, and Wang (2016) presented a method by
joint use of multiple satellite SAR data and geo-
technical models to study the surface deformation
of Shanghai ocean-reclaimed lands, which was
just suitable for the reclaimed deformations.

This paper proposes a novel method to solve the
abovementioned rank deficiency problem caused by
multiple subsets and to overcome the shortcomings
of the existing methods. We take the maximum
period detected from the time series deformation
in each independent subset as constraints to link
each independent subset, which allows us to
retrieve more straightforward and physically

sound long-term deformation time series. This
method is an extension of the traditional SBAS
method, which can be used in the deformation
monitoring with periodical phenomenon.

The paper is organized as follows. After
a detailed description of the constraint imposed
by the SVD method in multiple subsets in Section
2, the proposed method is then explained in
Section 3. Furthermore, the performance of the
proposed method is evaluated using both simulated
experiment and real SAR data in Section 4. Finally,
conclusions on the proposed method and plans for
future work are given in Section 5.

SBAS method

We consider N þ 1 SAR images acquired at ordered
times t1; t2; � � � ; tNþ1½ �; thus, M interferograms are
generated by setting the thresholds for temporal base-
line and/or spatial baseline. The unwrapped phase δϕj

at generic pixel ðx; rÞ (x and r are the azimuth and
range coordinates, respectively) of the j�th differential
interferogram can be expressed as Equation (1). For
the detailed description of the parameters involved in
Equation (1), we refer the readers to Berardino et al.
(2002).

δφj ¼ φðtB; x; rÞ � φðtA; x; rÞ

¼ 4π
λ
½dðtB; x; rÞ � dðtA; x; rÞ�

þ 4π
λ

B?;j

R sin θ
Δz þ Δφres

(1)

Furthermore, Berardino et al. (2002) considered the
mean deformation velocity vk;kþ1 between the time-
adjacent acquisitions as the estimated unknowns to
yield a physically reasonable result. Assuming that
only the deformation phase component is considered,
Equation (1) can be accordingly simplified as follows
(Berardino et al., 2002):

δφdisp
j ¼ 4π

λ
½dðtB; x; rÞ � dðtA; x; rÞ�

¼ 4π
λ

XtB�1

k¼tA

vk;kþ1ðtkþ1 � tkÞ (2)

where δφdisp
j denotes the deformation phase of the

j�th differential interferogram; k denotes the acquisi-
tion time indexes between tA and tB, as shown in
Figure 1.

Then, rewriting Equation (2) in a matrix form yields

λ

4π
δφdisp
M�1

¼ B
M�N

v
N�1

(3)

where v ¼ ½v1;2; � � � ; vN;Nþ1�T denotes the unknown
values associated with the deformation rates of the
considered pixel. The generic ðj; kÞ element of
design matrix B will be Bðj; kÞ ¼ tkþ1 � tk for
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tA � k � tB; "j ¼ 1; � � � ;M, and Bðj; kÞ ¼ 0
elsewhere.

When M unwrapped interferograms are within
a single subset, the design matrix B in Equation (3)
is an N�rank matrix. Then, the deformation rates
between the time adjacent acquisitions will be
uniquely obtained using the LS method and accord-
ingly the cumulative time series deformation can also
be achieved with an additional integration operation
by assuming that the deformation at the earliest SAR

acquisition date t1 is zero. However, if L ðL � 2Þ sub-
sets are available, the design matrix B is rank defi-
ciency with the rank of N � Lþ 1. Consequently,
ðBTBÞ is a singular matrix and infinite solutions can
be obtained from Equation (3). In practice, the SVD
method is simply applied to obtain the pseudoinverse
of coefficient matrix ðBTBÞ with the con-
straint ðvTvÞ ¼ min .

For the description about the risk caused by SVD,
readers can refer to Usai (2003). In this manuscript,

Figure 1. Pictorial demonstration of the different deformation rates between two time-adjacent SAR acquisition dates tA and tB.

Figure 2. Three independent subsets, which consist of nine interferograms with multiple overlaps in the time domain.
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however, we formulate the constraint imposed by the
SVDmethod with a more complicated but more realistic
example. Let us consider nine SAR images acquired at
the ordered times ½t1; t2; � � � ; t6; t7; t8; t9� and assume
that the interferograms are formed on the intervals
ðt1; t3Þ, ðt1; t6Þ, ðt2; t5Þ, ðt2; t8Þ, ðt3; t6Þ, ðt4; t7Þ, ðt4; t9Þ,
ðt5; t8Þ, and ðt7; t9Þ, which are separated into three inde-
pendent subsets (see Figure 2). The measured
unwrapped differential interferometric phases are

δφ ¼ ½ϕ13;ϕ16;ϕ25;ϕ28;ϕ36;ϕ47;ϕ49;ϕ58;ϕ79�T . Acco
rding to Equation (3), the design matrix B and the
unknown values v can then be written as follows:

Actually, the application of the SVD method to the
abovementioned rank-deficient problem implies the
assumption of an implicit condition, whose correspond-
ing equation can be determined by imposing the follow-
ing orthogonality condition (Strang, 1988; Usai, 2003):

B � b ¼ 0 (5)

where b is the vector or matrix of the equation
coefficients.

Combining Equations (4) and (5), the general solu-
tion can then be obtained in this example:

where b1 and b7 are arbitrary constant.
Moreover, the following datum equations are also

imposed as the constraint to give the minimum-norm
LS solution in rank-deficiency-free network adjustment
(Tao, 2002, 2009):

v1;2 � t2 � t1
t3 � t2

v2;3 þ t2 � t1
t4 � t3

v3;4 � t2 � t1
t6 � t5

v5;6 þ t2 � t1
t7 � t6

v6;7 ¼ 0� t8 � t7
t4 � t3

v3;4 þ t8 � t7
t5 � t4

v4;5 � t8 � t7
t7 � t6

v6;7 þ v7;8 � t8 � t7
t9 � t8

v8;9 ¼ 0

or bT � v ¼ 0

(7)

that is

1
t2 � t1

v1;2 � 1
t3 � t2

v2;3 þ 1
t4 � t3

v3;4

� 1
t6 � t5

v5;6 þ 1
t7 � t6

v6;7 ¼ 0
1

t4 � t3
v3;4

� 1
t5 � t4

v4;5 þ 1
t7 � t6

v6;7 � 1
t8 � t7

v7;8 þ 1
t9 � t8

v8;9 ¼ 0

(8)

It can be seen from Equation (7) and (8) that the
number of datum equations equals the dimension of
the null space of design matrix B. Moreover, the con-
straint imposed by the SVD method just depends on

the deformation rate vk;kþ1, in which tk and tkþ1 are
within two different subsets, for example, tk belongs to
the first subset while tkþ1 belongs to the second one.
Thus, the deformation rates shown in Equation (8),
which are used to connect the independent subsets,
can be regarded as a solution that meets the linear law
(Li, Zhang, Li, & Luo, 2013). Obviously, this is not
suitable or even unacceptable for the time series mon-
itoring of complex surface deformation from the phy-
sically meaningful point of view (Usai, 2003).

Constrained SBAS (CSBAS) InSAR

To solve the abovementioned rank-deficient problem
caused by multiple independent subsets and to over-
come the shortcomings of the SVD method, a CSBAS-
InSAR method with physically meaningful constraint
is proposed, which will better reveal the temporal
evolution of surface deformation. The core idea of
the proposed method can be reduced to two main
key points: the time series deformation in each inde-
pendent subset is firstly generated using least squares
(LS) method; the obtained independent time series
results are then connected using the period detected
from the aforementioned time series deformation as
constraints to obtain the optimal solution that

B ¼

t2 � t1 t3 � t2 0 0 0 0 0 0
t2 � t1 t3 � t2 t4 � t3 t5 � t4 t6 � t5 0 0 0

0 0 t4 � t3 t5 � t4 t6 � t5 0 0 0
0 t3 � t2 t4 � t3 t5 � t4 0 0 0 0
0 t3 � t2 t4 � t3 t5 � t4 t6 � t5 t7 � t6 t8 � t7 0
0 0 0 0 t6 � t5 t7 � t6 t8 � t7 0
0 0 0 t5 � t4 t6 � t5 t7 � t6 0 0
0 0 0 t5 � t4 t6 � t5 t7 � t6 t8 � t7 t9 � t8
0 0 0 0 0 0 t8 � t7 t9 � t8

2
6666666666664

3
7777777777775
and v ¼

v1;2
v2;3
v3;4
v4;5
v5;6
v6;7
v7;8
v8;9

2
66666666664

3
77777777775

(4)

b ¼ b1 � t2�t1
t3�t2

b1
t2�t1
t4�t3

b1 0 � t2�t1
t6�t5

b1
t2�t1
t7�t6

b1 0 0
0 0 � t8�t7

t4�t3
b7 � t8�t7

t5�t4
b7 0 � t8�t7

t7�t6
b7 b7 � t8�t7

t9�t8
b7

" #T

(6)
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conforms to the law of surface deformation. The fol-
lowing is the way to detect the period from the time
series deformation in independent subsets, which is
used to connect the isolated subsets:

We assume that M unwrapped interferograms
belong to L ðL � 2Þ independent subsets. First, the
linear deformation component and topographic resi-
dual phase caused by inaccurate DEM are simulta-
neously estimated using the LS method based on
Equation (9) (Berardino et al., 2002):

δφj ¼
4π
λ
ðtB � tAÞ�vþ 4π

λ

B?;j

R sin θ
Δz þ δφres;j (9)

where �v is the linear deformation rate and δϕres;j
represents the residual phase mainly caused by non-
linear surface deformation, atmospheric artefacts and
noises.

By subtracting the estimated linear deformation
and topographic error from each differential interfer-
ogram, the residual phase δϕres;j can be obtained.
Then, least squares (LS) inversion of the residual
phase is conducted for retrieving the corresponding
time series deformation by formulating the observa-
tion Equation (3) in each independent subset.
Subsequently, the Lomb-Scargle periodogram (LSP)
method (Lomb, 1976) is applied to carry out the fre-
quency-spectrum analysis of each independent time
series result. The corresponding periods Tm ðm ¼
1; 2; � � � ; LÞ can be accordingly derived by taking
the inverse of the peak frequency in each independent
subset:

Tm ¼ 1=fmax;m (10)

where fmax;m represents the peak frequency of m�th
subset.

Generally speaking, the periods Tm ðm ¼
1; 2; � � � ; LÞ detected from different subsets are
approximately equal, so the period T of the entire time
series can be accordingly determined. Finally, an integer
multiplication of the detected period T(e.g.
T; 2T; � � � ; Num � T), that is larger than the time gap
between different subsets, is selected as the constraints to
connect the independent residual time series deforma-
tion. The constraints can be expressed as followsunder an
assumption that the cumulative residual deformation
within the detected period is zero:

Xkþm�1

i¼k

viðtiþ1 � tiÞ ¼ 0

Xkþm�1

i¼k

ðtiþ1 � tiÞ ¼ Num � T
(11)

where Num is an integer number, vi denotes the
deformation rate between the times tiþ1 and ti. It
should be noted that vk and vkþm�1 must be in the
different subset; otherwise, the imposed constraints

will be of no use to solve the problem caused by the
rank deficiency.

Combining the observation Equation (3) and
constraint Equation (11), the design matrix B then
becomes full-rank when the number of imposed
constraint equations is equal to or greater than
the number of independent subsets ðLÞ. Therefore,
the deformation rate between successive SAR
acquisitions can be simply obtained by the LS
method and the unique residual time series defor-
mation are thereby generated by integrating the
estimated deformation rate in time domain. Thus,
the final time series deformation can be obtained
by calculating the sum of subtracted linear compo-
nent and estimated residual deformation compo-
nent. The main processing steps of the proposed
method are represented in Figure 3.

Experiments

Simulated data

To demonstrate the performance of the different
solutions and obtain the physically meaningful
solution from multiple independent subsets, we
designed three different schemes on two simulated
independent subsets (Figure 4). Similar to the refer-
ence (Lauknes et al., 2010), we only simulate the
deformations and test the performance on a single
point. It is assumed that the simulated InSAR
observations are also affected by the decorrelation
noise and atmospheric artefacts with zero mean
additive Gaussian noise with standard deviation of
0.1 cm and up to 1.8 cm, respectively. Without loss
of generality, the unwrapped phase is considered in
each interferogram. The time series deformation
estimation by SVD, LS with linear interpolation or
extrapolation (LS hereafter) and CSBAS-InSAR
(New hereafter) method is separately implemented.

Scheme 1: with one overlap in the time domain
In order to make the simulation more realistic, we
adopted the same SAR sensor parameters as those
from the real Envisat ASAR dataset of the Southern
California area used in the next section. For
a specific pixel, assuming no deformation in the
first epoch, a sinusoidal time series deformation is
simulated with the period of 350 days and sampling
interval of 35 days. The amplitude of the simulated
signal is set to 10 cm. The interferometric combi-
nation is shown in Figure 4(a), which includes 16
interferograms. It can be visible that the interfero-
grams with one overlap in the time domain are
included between the two independent subsets.

Figure 5 shows the time series deformation and
corresponding residuals when the standard deviation
of atmospheric artefact is set as 1.8 cm. The results of
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the three methods in the first subset agree well with
each other. However, comparison among the results of
the SVD, LS, and the true values shows that there exist
obvious biases in the second subset, which reach
−1.83 cm and −3.11 cm in the SVD and LS method,
respectively. In contrast to the aforementioned two
methods, the new method can provide a more consis-
tent result with the simulated true values in the entire
time series deformation. The bias between the result
and true value is −0.32 cm, which is much smaller than
those of the SVD and LS methods.

Scheme 2: without overlap in the time domain
Another scheme, two independent subsets without
overlaps in the time domain, is then considered. The
parameters of the simulated time series are the same as
those in Scheme 1 and the interferometric combination
in this scheme is shown in Figure 4(b), including 16
interferograms.

The estimated time series deformation and corre-
sponding residuals are shown in Figure 6. Here, the
results of the SVD, LS and new methods are also in
agreement with the simulated true value in the first

Figure 3. Block diagram of the CSBAS-InSAR method.
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subset but biased in the second subset, among which
the biases reach 17.39 cm, 15.90 cm and −0.53 cm,
respectively.

Scheme 3: with multiple overlaps in the time
domain
A more realistic scenario is performed, which consid-
ers multiple overlaps in the time domain between the
two independent subsets. The interferometric

combination is shown in Figure 4(c), including 32
interferograms. The parameters of the simulated time
series are also the same as those in Scheme 1.

In this scheme, the time series deformation calcula-
tion is firstly conducted in each independent subset.
Subsequently, Lomb-Scargle periodogram (LSP)
method is utilized to perform frequency-spectrum
analysis to derive the corresponding period of the
obtained residual time series deformation for each

Figure 4. Three schemes on two simulated subsets with one overlap (a), without overlaps (b) and with multiple overlaps (c)
between two subsets.

Figure 5. Time series deformation of the three methods with respect to Scheme 1 shown in Figure 4(a). Solid lines represent the
time series deformation, and dashed lines show the residuals between the estimated results and simulated true values. The true
values, and the results derived from the SVD, LS and new method are marked by the black, red, green and blue solid circle,
respectively. The residuals of SVD, LS and new method are marked by the hollow circles.
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independent subset (Figure 7). Then, the detected
period (T 	 350 days) is selected as the constraint in
Equation (11) to connect these two disconnected
subsets.

The estimated time series deformation and the cor-
responding residuals are shown in Figure 8. It can also
be concluded in this example that if ti belongs to the
first subset, the corresponding time series deformations
derived by these three methods are all consistent with
the simulated true values. However, if ti belongs to
the second subset, the deformations derived both from
the SVD and LS methods show obvious biases with the
given values, while the results derived by the new
method can match well with the given values.

To better evaluate the performance of these three
methods, a Monte Carlo simulation experiment with
100,000 iterations for the atmospheric artefacts with
different noise levels is carried out and the averaged
root-mean-square errors (RMSEs) of the residuals
between the simulated and estimated time series
deformation for SVD, LS and new methods are
shown in Figure 9. As expected, for all the cases, the

results derived from the new method have lowest
RMSEs in three schemes, which demonstrates that
the proposed method can improve the accuracy of
the estimated time series deformation when the inter-
ferograms belong to two or more different subsets,
especially for the case that there is no or just one
overlap between subsets in the time domain. It is
reasonable to see the averaged RMSEs increase along
with the increase of the noise level of the atmospheric
artefacts. Meanwhile, the experiments indicate the
period is estimated correctly by LSP.

It can also be summarized as follows from these
experiments (Figures 5, 6, and 8): (1) the constraint
imposed by the SVD method depends on the defor-
mation rate vk;kþ1 in which tk and tkþ1 are within
different subsets (e.g. tk in the first subset; tkþ1 in
the second subset); (2) the constraint imposed by
the LS method depends on the selected interfero-
gram, which is used to connect the SAR acquisi-
tions in different subsets; (3) the constraint
imposed by the new method depends on the
detected period of the time series deformation,

Figure 6. Time series deformation of the three methods with respect to Scheme 2 shown in Figure 4(b). The symbols are the same
as those shown in Figure 5.

Figure 7. Spectrum diagram detected by Lomb-Scargle periodogram (LSP) with respect to Scheme 3 shown in Figure 4(c). (a) and
(b) represent the spectrum diagram detected from Subset1 and Subset2, respectively. pxx denotes the Lomb-Scargle power
spectral density (PSD) estimate of the time series deformation while the red solid circle denotes the peak frequency.
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which considers the cumulative deformation within
the specified period equals to 0.

Real data

Fifteen ascending Envisat ASAR scenes, which covers
Southern California from 29 October 2003 to
27 December 2006, are used in this test. Twenty-four
interferograms are generated with the perpendicular
baseline varying from −384 m to 375 m, which are
automatically separated into two independent subsets.
One arc-second Shuttle Radar Topography Mission
(SRTM) DEM data with the resolution of 30 m is
used to eliminate the effect of topographic phase.
The preliminary orbit state vectors are then refined
using the DORIS data provided by the European Space
Agency (ESA). To suppress the effect of noise, a multi-
looking operation with 2 pixels in range direction and
10 pixels in azimuth direction is performed. Then,
adaptive spectral filtering of the interferograms is car-
ried out to further reduce the phase noise (Goldstein &
Werner, 1998). Minimum cost flow (MCF)
(Costantini, 1998) and Delaunay triangulation

algorithms are applied to obtain the unwrapped dif-
ferential interferograms, in which only the pixels with
coherence higher than a given threshold are consid-
ered. Moreover, a combined model is adopted to
reduce the artefacts of orbital error and atmospheric
disturbance, which consist of a 2-D quadratic model
for the orbital error (Shirzaei & Walter, 2011) and
a linear model for the elevation-dependent error (i.e.
stratified atmospheric delay) (Chaabane, Avallone,
Tupin, Briole, & Maitre, 2007). Finally, similar to the
previous studies, the GPS site, namely, East L.A.
Science Center (ELSC) on 29 October 2003 is used as
the reference point and reference time for the calcula-
tion of the time series deformation (Hu et al., 2013;
Lanari, Lundgren, Manzo, & Casu, 2004b). Figure 10
shows the estimated mean deformation rate from
October 2003 to December 2006 and its correspond-
ing standard deviation (STD) by the LS inversion
based on Equation (9). The low-coherence regions
with the average coherence lower than 0.3 are masked
out because the interferometric phases in those
regions cannot be correctly unwrapped. It should be
noted that the obtained deformation rate is in the line

Figure 8. Time series deformation of the three methods with respect to Scheme 3 shown in Figure 4(c). The symbols are the same
as those shown in Figure 5.

Figure 9. Averaged RMSEs versus atmospheric artefact for the SVD, LS and new methods with respect to three schemes shown in
Figure 4.
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of sight (LOS) direction. The positive values indicate
that the ground moves towards the satellite sensor,
and vice versa. It can be clearly seen from Figure 10
that an evident increasing rate reaches 33 mm year−1

in the southern part of the investigated area while
subsidence occurs in Pomona with a rate of about
29 mm year−1. The corresponding measurement pre-
cision ranges from 0.1 mm year−1 to 6.5 mm year−1

(Figure 10). Compared with the previous researches
(Hu et al., 2013), the obtained result in this study
shows the similar deformation rate and pattern, indi-
cating that the estimated deformation rate is reason-
able and reliable.

After the removal of the linear deformation com-
ponent and topographic error, the residual time series

deformation is calculated by the aforementioned three
methods (i.e. SVD, LS and the new methods). To
better evaluate these three methods, the time series
deformation of four typical SCIGN sites (i.e. BLSA,
LBC1, PMHS and SACY) are involved. As for LS
method, a “simulated” deformation result (e.g.
20031029_20040630) is calculated by linear interpola-
tion of the pre-existed interferogram (e.g.
20031029_20040908) to connect the two different sub-
sets. While as for the new method, the period of the
residual time series deformation derived from SVD
method is firstly detected by the LSP method as
T 	 385 days, which then is taken as the constraint
to solve the unique time series deformation. To rea-
sonably compare the InSAR-derived results with GPS

Figure 10. (Left) Mean LOS deformation rate between October 2003 and December 2006 and (right) STD of the estimated mean
LOS deformation rate. The results are superimposed on a shaded relief map. The location of reference-point ELSC is marked by
a square, and the Southern California Integrated GPS Network (SCIGN) sites are marked by triangles. The deformation rate has
been calibrated with the GPS results at the ELSC site.

Figure 11. LOS deformations derived from the InSAR with SVD, LS and new method at the selected GPS stations shown by
triangles, diamonds and circles. The cross symbol denotes the time series deformation from GPS. The blue diamonds and the
circles show the biases between the LS and SVD and those between the new method and SVD.
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measurements, the coherent points that lie within
200 m of the GPS station are selected and averaged
as the deformation value of the GPS station. Figure 11
(a–d) show that the comparison between the results
derived from the three methods and those from the
GPS measurements. The averaged STD values of the
differences between InSAR results from these three
methods and GPS observations at points BLSA,
LBC1, PMHS and SACY are listed in Table 1. It can
be seen that the result obtained from the new method
is in better agreement with the GPS measurements
than those from SVD and LS methods, which shows
the same conclusion as the simulated experiments.
The reasons for the discrepancies between InSAR
results and GPS measurements are possibly due to
the uncompensated atmospheric artefacts, orbit
ramps, and even errors in the GPS observations. The
results among the SVD, LS, and new methods show
fixed deviations, which are the intrinsic unsolved pro-
blem of SVD and LS.

Conclusions

A constrained SBAS InSAR method is proposed to
address the problem of rank deficiency caused by
multiple independent subsets. To solve the deforma-
tion datum between two independent subsets, the
maximum period is added as the external constraint,
which is estimated by using frequency-spectrum ana-
lysis with LSP method in each subset after removing
the linear deformation, topographic error and atmo-
spheric artefact components from the interferograms,
i.e. from the residual time series deformation. Then,
one or more interferograms are generated across the
independent subsets to link them together under the
assumption that the cumulative residual deformation
within the detected period is zero. Finally, LS inver-
sion is carried out to derive more reliable time series
deformation. To evaluate the performance of the pro-
posed method, the biases among SVD, LS and the
proposed methods are quantitatively compared in
the simulated and real data experiments. As for real
data experiment, in-situ GPS measurements are
involved to assess the accuracy of three methods. The
time series deformation derived by the new method
agree well with the GPS measurements than the other
methods, which indicates that the new method can
derive more accurate deformation than those with

the SVD and LS methods. However, we currently
only consider one maximum period as the constraint
to solve the deformation datum between two indepen-
dent datasets. Once any other nonlinear deformation
like exponential, logarithmic or sigmoid functions
occurred, this method cannot be applicable. In the
further research, more flexible physically meaningful
constraints based on the hypothesis tests will be
considered.
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