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The Great Dismal Swamp (GDS), one of the largest, northernmost peatlands on the Atlantic Coastal Plain, is un-
derlain by a thick water-logged organic soil layer (peat) made up of dead and decaying plant material. The
peatland functions as a main sink for a large amount of soil derived organic carbon. The disturbance of this wet-
land has negatively impacted the ecosystem and contributed to climate change through the release of the stored
greenhouse gases. Surface water level and soil moisture conditions are critical information about peatlands, but
monitoring these hydrologic changes has been a challenging task. With a lack of in situ soil moisture measure-

Keywords:
Gr}e’:‘{( Dismal Swamp ments, we first explored yearlong Soil Moisture Active Passive (SMAP) data to find the close relationship (R-
Peatlands squared value: 0.80) between soil moisture and groundwater table from March 2015 to March 2016. Based on

Groundwater level changes synthetic aperture radar (SAR) backscattering returns and interferometric SAR (InSAR) phase measurements
SAR from C-band Radarsat-1 and L-band ALOS PALSAR datasets, we then analyzed the hydrologic changes in the

IHSAR ) peatlands. We compared averaged C/L-band SAR backscattering intensity (mid 1998-early 2008 for Radarsat-
Sﬁxsmsmre 1, late 2006-early 2011 for ALOS PALSAR) with groundwater level changes and found that the SAR backscattering

is significantly responsive (R-squared value: 0.76 and 0.67 for Radarsat-1 and ALOS PALSAR, respectively) to soil
moisture changes through a three-way correlated relationship of soil moisture, groundwater level, and SAR in-
tensity. Using InSAR coherence observations, we delineated the inundated area (western and northern regions
of GDS) during the wet season, subject to double-bounce backscattering. We measured the relative water level
changes in the inundated areas through the InSAR phase measurements, and estimated the groundwater level
changes corresponding to soil moisture changes using time-series InSAR analysis. Our comprehensive study
has demonstrated that time-series SAR backscattering returns and InSAR analysis can be used to gauge soil mois-
ture conditions and to monitor the hydrologic and vegetation changes in the GDS.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

A peatland is wetland with a thick water-logged organic soil layer
(peat) made up of dead and decaying plant material. Peatlands cover
<3% of Earth's surface area, but they contain the equivalent of half of
the carbon that is in the atmosphere as CO, (Dise, 2009). Peatlands
are unbalanced systems where production rates exceed decomposition
rates, leading to the accretion of carbon, and ultimately functioning as a
sink of a large amount of organic carbon (Fenner and Freeman, 2011).
The Great Dismal Swamp (GDS) is one of the largest, seasonally flooded,
and nonriverine swamp on the Atlantic Coastal Plain (Mitsch and
Hernandez, 2013). The impounded water from seasonal flooding boosts
the accumulation of the organic soils (peats) in forested wetlands that
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are highly acid, impermeable, and combustible. For centuries the
peatland has been exposed to intense human activities and has experi-
enced drastic changes to the ecosystem and hydrology. The swamp, not
far from the first permanent English settlement in the Americas, James-
town, Virginia, was initially developed by George Washington and
drained for agricultural use in many areas. Ditches and canals were con-
structed throughout the swamp to promote drainage and transport har-
vested timber. Due to intensive development, the area has been reduced
from an estimated 202,350 ha in precolonial times to 85,000 ha today
(Day, 1982). Recent scientific studies have revealed vital factors
effecting the disturbance and storage processes in peatlands (Fenner
and Freeman, 2011; Ise et al., 2008). Hydrology is the driving force con-
trolling most surface and subsurface processes in peatlands. The GDS is
not a riparian environment, so the flooding regime is clearly the domi-
nant influence. The frequency, timing, depth, and duration of inunda-
tion are all critical factors affecting vegetation distribution patterns
and processing rates through the regulation of soil properties such as
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nutrient availability and oxygen content (Day et al., 1988). These
hydrologic changes to the soil layer are a key factor in the biochemical
processes regulating greenhouse gas fluxes (carbon dioxide and meth-
ane) and the storage of carbon (Ise et al., 2008).

Methane is produced in the anaerobic conditions of saturated
peatlands and with shallow ground water conditions methane is re-
leased into the atmosphere. Methane emissions are reduced when the
ground water surface drops, forcing the gas to travel through aerobic
soils where methanotrophic bacteria consume the gas (Harriss et al.,
1982; Fenner and Freeman, 2011). This relationship to ground water
can influence the regulation of soil decomposition processes and green-
house gas fluxes, and periodic, seasonal water inputs to the GDS have
created an anoxic environment where decomposition of organic mate-
rial is slowed, effectively storing the carbon within the saturated soils.
These unique soil conditions also support a limited range of vegetation
species that increase the uptake of atmospheric carbon dioxide, includ-
ing Atlantic White Cedar, Cypress Gum, Maple Gum, and Pine Pocosin
(Sleeter et al., 2017).

Preserving the natural hydrologic changes in peatlands is crucial for
regulating the negative impacts associated with the disturbance of peat
soils. Because the GDS is primarily influenced by seasonal fluctuation of
surface water and groundwater flow, extensive anthropogenic drainage
efforts have resulted in significant drying of the near-surface peat layers.
These conditions have progressively converted the wet, organic rich
soils into dry, granular soils. Soil transformations of this nature are usu-
ally irreversible and can accelerate the greenhouse gas flux and make
peat soils more susceptible to natural ignition during lightning or
human-ignited fires, where the peats burn through smoldering com-
bustion. This flameless form of combustion occurs more readily than
flaming combustion, but can be coupled with flaming combustion
under drought conditions (Turetsky et al., 2014). The sensitivity of
peatlands to hydrologic conditions in the soil and resulting contribu-
tions to climate change have been identified and defined (Ise et al.,
2008), however, monitoring these hydrologic changes, such as water
table and soil water content, has been a challenging task. The spatial ex-
tent of hydrologic effects can be both localized and regional, requiring
substantial in situ measurements to adequately define changes taking
place. The wet, remote, and expansive nature of peatlands, make in
situ measurements both difficult and costly to obtain, often resulting
in a lack of information.

Synthetic Aperture Radar (SAR), with all-weather and day-and-
night observing capability, has become one of the best tools to monitor
the freshwater wetlands in the world (e.g., Alsdorf et al., 2000, 2001; Lu
et al,, 2005, 2014; Lu and Kwoun, 2008; Jung and Alsdorf, 2010; Kim et
al., 2009; Kim et al., 2013; Kim et al., 2014; Wdowinski et al., 2004,
2008). The SAR backscatter coefficient from a long wavelength sensor
in wetlands is sensitive to soil moisture, surface inundation, vegetation
type, and leaf-on/off condition. Radar waves can penetrate vegetation
canopy and interact with ground surface, and thus observe the land
and water surface beneath the forest canopy and soil moisture content
that is correlated with groundwater table. With the capability of dis-
criminating land cover types and delineating inundated areas in large
river basins and wetland areas (Hess et al., 1990; Hess et al., 1995;
Hess et al., 2003; Ramsey, 1995; Wang et al., 1995; Kwoun and Lu,
2009), SAR intensity can be used to retrieve the soil properties, such
as soil moisture, for various hydrological and meteorological applica-
tions (e.g., Lu and Meyer, 2002; Kasischke et al., 2009; Kornelsen and
Coulibaly, 2013). Furthermore, exploiting phase and coherence compo-
nents through interferometric SAR (InSAR), we can measure the water
level changes and observe the scattering characteristics of vegetation
types in these wetland environments (Brisco et al., 2017; Kim et al.,
2009; Jung and Alsdorf, 2010; Kwoun and Lu, 2009; Kim et al., 2013;
Kim et al., 2014; Lu and Kwoun, 2008; Ramsey et al., 2006).

There has been a strong interest to find the correlation between SAR
observations and soil moisture changes through analyzing hydrologic
condition in land surfaces where human disturbance (i.e. drainage,

deforestation) has put constant pressure on the environmental
condition. There have also been numerous efforts to observe the soil
moisture in agricultural fields, bare soil fields (Dubois et al., 1995; Le
Hégarat-Mascle et al., 2002; Moran et al., 2000; Oh et al., 1992), and veg-
etation-covered regions (Ulaby et al., 1982; Romshoo et al., 2002;
Wigneron et al., 2004; Joseph et al.,, 2010). Most of these studies relied
on SAR backscatter models that utilized low/high order polynomials
or exponential and logarithmic equations, that were defined from in
situ soil moisture, biomass, and roughness measurements. However,
the equations differ from sensor to sensor and site to site, and the SAR
backscattering, particularly from spaceborne sensors, is heavily influ-
enced by artifacts from speckles and noise. The coherent contribution
of the returned SAR signal comes from independent scatterers random-
ly distributed in the range cell (e.g., Franceschetti et al., 1992), and the
speckle can include the effects of diverse backscattering mechanisms in-
duced by soil moisture, inundation conditions, and vegetation charac-
teristics. To overcome such limitations, the interferometric phases
with high coherence can been utilized to estimate moisture changes in
bare soils and beneath vegetation. A recent study found that the inter-
ferometric phases from InSAR are highly correlated with soil moisture
(Zwieback et al,, 2015), and the phase consistency in triplets of interfer-
ograms was introduced for soil moisture estimation (De Zan et al.,
2014).

In our study, the hydrologic changes in the GDS, composed of chang-
es in the surface water and groundwater levels, are related to soil mois-
ture variations. These changes were observed using C- and L-band SAR
time-series change analysis in the backscatter coefficients and interfer-
ometric phase in low-lying peatlands. We adopted a top-down ap-
proach, from a large scale (the entire GDS area), to an intermediate
scale (areas according to vegetation covers), and finally at a small
scale (a point target in a non-inundated area). This method is adopted
to reduce scale related limitations, for example the SAR products, at a
large scale, cannot exclude the effect of surface water, but measure-
ments, at a smaller scale in the non-inundated regions, are relatively in-
dependent of standing surface water and mostly influenced by changes
in soil moisture. Exploiting all available data products (SAR intensity as
well as interferometric phase and coherence) from SAR and InSAR max-
imizes the utility of the spaceborne SAR sensor, and provides better def-
initions of the spatiotemporal hydrologic changes beneath vegetation
and delineations of the areas subject to the impoundment of surface
water.

2. Characteristics of study region and data
2.1. Characteristics of study region

The GDS is located on the coastal plain in southeastern Virginia and
northeastern North Carolina. The surface gradient is gradual and to the
east with soils that consist of unevenly distributed mucky peat under-
lain by clay over a shallow aquifer (Day, 1982). Once peat covered,
most of the swamp floor consisted of oak and hickory forests, but has
slowly been replaced by gum, cypress, juniper, and a variety of other
species (Bradley, 2013). The western part of the swamp is covered by
Cypress Gum (Fig. 1(a, b)), which is a typical southern swamp commu-
nity adapted to surface inundation for at least part of the growing sea-
son. This forest community, covering 12% of the wetland, prospers
where standing water is abundant. Cypress Gum forests are character-
ized by frequent, prolonged flooding from January to June, on poorly
drained soils. They are slowly growing, but long-living in comparison
to the other forest communities in the GDS, reaching their maximum
height at 200 years (average canopy height is 30-35 m). Mortality can
occur naturally any time after 200 years, but disturbance often shortens
this life span (Sleeter et al., 2017). In the GDS, the Cypress Gum forest,
formerly the most extensive association in the swamp, has been trans-
formed into Maple Gum forests due to the change of the hydrologic set-
tings and the intrusion of outside species. The Maple Gum forests,
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Fig. 1. (a) Shaded-relief image of the study area. The red and yellow rectangular outlines respectively show the coverage of Radarsat-1 and ALOS PALSAR images used in this study (Fig. 3).
The black rectangle is the location outline for panel (b). (b) Vegetation cover map over the Great Dismal Swamp. The vegetation cover map was created by both the field inventory and
formal classification of vegetation types from multi-state regional data sets available at the Virginia Department of Conservation and Recreation (Fleming et al., 2001). Lines represent
streams, artificial paths, and canal ditches. Cyan triangle (59A30) and Orange triangle (58B13) are two groundwater well sites inside and near the wetland, respectively. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

currently the most dominant association, covering approximately 61%
of the landscape (Fig. 1(b)), expanded over the past 30 to 40 years
and are susceptible to occasional seasonal flooding (USFWS, 2006).
Red Maple, one of two primary tree species of Maple Gum along with
Black Gum, is a hardwood species that is native to a wide region in
North America, ranging from Newfoundland in the north, to Florida in
the south, and as far northwest as Illinois and southwest to Texas
(Little, 1979). Red Maple can grow in conditions ranging from poor
dry soils to humid wetlands. Because of its high adaptability to a wide
range of site conditions, the Maple Gum can prosper in the GDS. The
life span of Maple Gum is shorter than other forest communities,
reaching full maturity at 70-80 years, and rarely existing beyond
150 years. Average mature trees are 18-27 m in height and 46-76 cm
in DBH (diameter breast height) (Sleeter et al., 2017; Hutnick and
Yawney, 1961). The Atlantic White Cedar forests are another notable
community that occur sparsely along canal ditches; the forests in the
westernmost part of the GDS have been transformed to upland forests
due to drainage for agricultural use and now provide an ideal environ-
ment for this species. Atlantic White Cedar covers 3% of the GDS and fa-
vorable conditions for the forest community are considered stressful for
other conifer species. The conditions include 4-6 months annually of
water inundation, a shallow water table averaging 10 cm from the sur-
face during the growing season, and highly acidic soils. Atlantic White
Cedar can reach heights of 15-20 m and 25 cm at DBH in 50 years
(Schroeder and Taras, 1985). The Pine Pocosin occurs in areas where or-
ganic soils have poorly developed internal drainage, and the low-lying
vegetation is dominated by broadleaved evergreen shrubs with average
heights of 14 m and DBH of 25 cm (USFWS, 2006). Biophysical charac-
teristics of the species vary based on peat depth, soil saturation, and
fire history. The height of Pine Pocosin increases with decreasing peat
depth (Sleeter et al., 2017). In contrast to other forested wetlands,
Pine Pocosin is a lone shrubland in the GDS. The disturbed classes (Fig.
1(b)) are defined as the areas damaged by wildfires (Disturbed Fire),
anthropogenic developments (Disturbed Man-made), tropical storms
(Disturbed Natural) or unidentified causes (Disturbed). Among all com-
munities in the GDS (Fig. 1(b)), Cypress Gum is the most susceptible to
the seasonal surface water impoundment, followed by Atlantic White
Cedar, and then Pine Pocosin. Surface water covering the areas populat-
ed by Cypress Gum is abundant during wet seasons due to local topog-
raphy and close proximity to the hydrologic inputs, while the Pine
Pocosin have little to no standing surface water. Upland Pine, growing

in the westernmost areas of the GDS, experiences barely any inundation
during the high-water season, and the communities often occur on land
that has been drained for agricultural uses.

The hydrology in the GDS can be characterized by drastic, seasonal,
and multifaceted fluctuations that surface water flow from adjacent up-
land areas, rainfall, evapotranspiration, and outflows in ditches and
river/stream channels. Usually in wetlands, the season with the greatest
amount of precipitation is anti-correlated with the season that experi-
ences high water. However, in the GDS, despite the large amount of
rainfall in the summer, this is the lowest water season (Carter et al.,
1977). Because of the atmospheric regimes in the GDS during this sea-
son, the evapotranspiration exceeds rainfall and becomes the biggest
source of water removal (USFWS, 2006). The discharge through ditches,
river channels, and the Dismal Swamp Canal consistently contribute to
the water outflow year round. In the winter, when the evapotranspira-
tion becomes less influential, surface runoff is apparent across the en-
tirety of the swamp with flooding and overflowing ditches and canals
typical in the western and northern regions of the wetland. This
flooding provides significant benefits in the peatland environment by
preserving the appropriate soil moisture throughout the year and sup-
pling the ecosystem with necessary nutrients.

2.2. Data

C-band (wavelength of 5.7 cm) Radarsat-1 and L-band (wavelength
of 23.6 cm) ALOS PALSAR datasets were used for this study. A total of 31
standard beam mode Radarsat-1 images from May 1998 to April 2008
(red box of Fig. 1(a)) were utilized for our study. Radarsat-1 has a HH
polarization with a spatial resolution of 30 m at this beam mode. In ad-
dition, 13 fine beam mode ALOS PALSAR images from 2006 to 2011 (yel-
low box of Fig. 1(a)) were acquired. Among the PALSAR images, four
were acquired in Fine Beam Single-polarization (FBS) model with HH
polarization. The rest of the PALSAR scenes were in Fine Beam Dual-po-
larization (FBD) mode which includes both HV and HH polarizations.
HV polarized SAR images are effected by volume scattering and are
not preferred for studying wetland hydrology beneath forest canopy
(Lu et al., 2005, 2014; Lu and Kwoun, 2008; Kim et al., 2009). Thus,
only HH polarized SAR images from both satellites were applied to our
study because this polarization is relatively independent of volume scat-
tering and is instead sensitive to double-bounce backscattering in for-
ested wetlands (Lu and Kwoun, 2008; Kim et al., 2009).
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The lack of adequate hydrological field measurements to provide a
means of ground-truthing the remotely acquired SAR data presents
challenges in studying the GDS. Surface water level and soil moisture
measurements are critical information to monitor the health and evolu-
tion of peatlands and provide information to use as comparison to re-
motely sensed data. Unfortunately, in the GDS most water gages are
only located along ditches and canals. Because the water flow near
these artificial structures cannot fully reflect the hydrologic changes
throughout the swamp, the gauged measurements are not compared
with our SAR and InSAR measurements. Additionally, there were no
permanent stations to measure soil moisture inside the swamp. Soil Cli-
mate Analysis Network (SCAN) provides one of the largest soil moisture
networks in the U.S., but the SCAN stations are dense in Utah, Nevada,
California, and Mississippi leaving the eastern U.S. with limited cover-
age. We instead had to exploit information about the groundwater
table from groundwater sites operated by U.S. Geological Survey
(USGS). Somorowska (2003) proposes that the depth of the water
table, defined as the measurement from the ground surface to the top
of the groundwater, is closely associated with soil moisture content.
This hypothesis needs to be confirmed by ground-truth or supplemen-
tary data, because wetlands involve a variety of different environmental
settings that can produce individual responses between groundwater
fluctuation and soil moisture. To assess this relationship, we employed
the products available from the Soil Moisture Active and Passive
(SMAP) satellite that was launched in January 2015 with global soil
moisture measurements available from late March 2015 to the present.
NASA's SMAP mission planned to use L-band SAR and a radiometer to
concurrently estimate soil moisture that can then be integrated as a sin-
gle observation system. The combination of active (SAR) and passive
(radiometer) sensor produces a synergistic effect while improving res-
olution and maintaining high sensitivity to soil moisture, surface rough-
ness, and vegetation scattering (NASA, 2014). Although the active SAR
sensor stopped operating due to a power failure in July 2015, the SMAP's
radiometer-derived products still offer a unique opportunity to remote-
ly measure wetland soil moisture (particularly in the top 5 cm of the soil
column) from space. From a variety of SMAP products, we selected Level
4 surface soil moisture measurements to compare with the groundwa-
ter level. The SMAP Level 4 soil moisture products are estimated by as-
similating a land surface model that monitors the evolution of soil
moisture, snow, temperature, and precipitation, with the SMAP obser-
vations that are weighted by the uncertainties in both the satellite
data and land model predictions (NASA, 2014). The nominal resolution
of Level 4 SMAP surface soil moisture data (unit: m*>/m?) is 9 km.

In addition, we utilized the groundwater level from two gage sta-
tions (groundwater wells) in our study area: one inside the swamp
(cyan triangle in Fig. 1(b), hereafter called inside station) and one out-
side the swamp (orange triangle in Fig. 1(b), hereafter called outside
station). These inside and outside stations were installed in 2009 and
1981, respectively. Despite the decadal difference in installation, mea-
surements of these gage stations are considered reliable because the
data exhibit subtle and consistent sensitivities to the seasonal hydrolog-
ic fluctuations expected in the wetland and provide magnitudes that are
in good agreement with each other. For long-term comparison of SAR
intensity analysis, the data from the outside station were utilized. The
measurements from the inside station were compared with results
from InSAR time-series analysis spanning from 2009-present and used
to assess the relationship between SMAP surface soil moisture and
groundwater level.

3. Methodology

In general, radar backscattering in forested wetlands represents a
combination of surface, double-bounce, and volume scatterings. Over
bare-earth or agricultural fields, the backscattering mechanism is rela-
tively simple and is dominated by surface scattering with little or no
penetration. Backscattering over forested wetlands, such as the GDS,

depends upon numerous factors, including the vegetation cover and
density, soil moisture content, aboveground biomass, canopy opening,
and the level of standing water in areas that are flooded. For example,
when the swamp is flooded during the wet season, double-bounce scat-
tering is magnified and SAR backscattering is thereby strong, but this ef-
fect can differ with the vegetation cover. In relatively low-lying
peatlands covered by shrubs, the double-bounce scattering will be
weak compared to taller Cypress-covered forests. Analysis relying
completely on the SAR backscatter cannot exclude the effects of season-
al inundation and double-bounce scattering from standing surface
water in the vegetated peatland. Vegetation cover can provide compli-
mentary information such as the Upland Pine or Pine Pocosin is less in-
fluenced by the presence of seasonal standing water compared to
Cypress Gum and Maple Gum. Using this data in comparison with the
SAR backscatter and gage measurements of the local groundwater levels
can help find the relationship between the SAR backscattering and the
soil moisture. In addition, it should be noted that the SAR backscattering
intensity values include the speckle effects due to the coherent sum of
backscattered signals from multiple distributed targets. Hence, we
averaged the SAR intensity over the whole GDS according to the
vegetation cover, and compared the averages with groundwater level
measurements.

Comparison between direct soil moisture measurements and the
SAR products (SAR backscatters and interferometric phases) is optimal
for establishing their relationship and identifying causes for variations
in the radar measurements. We do not, unfortunately, have long term
ground-truth measurements of soil moisture and there are no temporal
overlaps between spaceborne observations (i.e. SMAP soil moisture
from March 2015 to March 2016 and SAR backscatters (Radarsat-1
and ALOS PALSAR) from 1998 to 2011). When we consider the seasonal
and inter-annual fluctuations of soil moisture and radar measurements,
direct comparison of different temporal periods is clearly inappropriate.
Therefore, a three-way comparison of soil moisture measurements,
groundwater level changes, and our SAR products was employed. If
there is a close relationship between soil moisture variations and
groundwater level changes, we can infer the association between soil
moisture and SAR backscattering returns. The latest observation of
SMAP provided us with a time-series of soil moisture measurements
from space and although the Level 4 products have a coarse grid size
of 9 km (Fig. 2(a)), which includes undesired effects from nearby agri-
cultural fields, the overall temporal variations should be closely related
to the soil moisture changes in the GDS. Fourteen 9-km Equal-Area Scal-
able Earth-2 (EASE2) grids (Brodzik et al., 2012) from Level 4 SMAP
products cover the GDS (Fig. 2(a)), but a single grid (blue box of Fig.
2(a)), where weather station (yellow triangle) and groundwater well
(cyan triangle) exist, was selected to compare the soil moisture with
the groundwater level.

The coherence and interferometric phase are two major products of
InSAR processing. InNSAR coherence can be calculated by cross-correla-
tion of the co-registered SAR image pair over a small window of pixels
(Lu and Freymueller, 1998; Lu and Dzurisin, 2014):

yo 2GG 1)

YICiPECG

where C; and G, are complex-valued backscattering coefficients, and G5
is the complex conjugate of C,. Coherence represents the consistency of
scattering mechanisms between two pixels with the same location but
acquired at different times. If the surface condition is altered or the
area has dense vegetation, the coherence becomes low. Wavelength is
a key factor in coherence estimate: L-band SAR signal with a long wave-
length (23.6 cm) can keep high coherence in forested wetlands while
the shorter wavelength of C-band data (5.7 cm) cannot penetrate the
canopy and thus loses coherence. Generally, when the primary focus
is estimating surface water level change using techniques in InSAR
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processing, the data with low coherence are considered useless. Howev-
er, the spatial variation of coherence also provides useful information on
flooding condition and vegetation cover (Kwoun and Lu, 2009). Based
on InSAR coherence, we can delineate the areas inundated with surface
water in the vegetated wetlands because swamp forests and marshes or
bogs covered with tall shrubs tend to maintain high coherence during
the high water (wet) seasons. Using these characteristics, the regions
unaffected by standing water and run-off events can be extracted to bet-
ter compare the relationship between soil moisture changes and InSAR
products. The interferometric phase change observed over wetland en-
vironments has also been used to estimate relative water level changes
(e.g., Alsdorf et al., 2000, 2001; Kim et al., 2009). Increases in the stream,
canal, and subsurface discharge rates during the wet season have large

impacts on the hydrologic storage and movement in the GDS that can
result in surface run-off events near the inflow of ditches and streams.
Therefore, InSAR can estimate the localized relative water level changes
in the sections dissected by ditches, following the equation:

}\d)def

Oh=— 41 cosh

+n ()

where 0h is relative water level change, 0 is an incidence angle, A is the
wavelength, ¢q.ris deformation phase after differential InSAR process-
ing, and n is a noise component. Furthermore, when we have results
from processing InSAR time-series, we can estimate temporal variations
of surface deformation. Based on the Small BAseline Subsets (SBAS)
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algorithm (Berardino et al., 2002; Schmidt and Biirgmann, 2003), we
can calculate time-series vertical displacements from multiple interfer-
ograms using the equation:

0 1 0 0 0 0 0
b1 -1 1 0 0 0 0
b5 __4n cosf | —1 0 0 0 1 0
brs | A 0 -1 o0 0 1 0
4,” 0 0 -1 o0 1 0

d;

gz

3

X d,

dN+1

()

where ¢; ; is interferometric phase between i and jth SAR obervations, d;
is the ith cumulative vertical component (deformation) in time order,
and N is the number of SAR acquisitions. When there are time-series in-
terferometric phase changes in non-inundated areas, they can be relat-
ed to moisture changes in the upper soil columns (Zwieback et al.,
2015). Therefore, at a small-scale, for a target area that is vegetated
but not inundated all year, time-series interferometric phases and soil
moisture changes (via groundwater level changes) will be compared.

4. Results
4.1. Relationship between soil moisture and groundwater level changes

Because SMAP products have only been released since March 31,
2015, year-long datasets (March 31, 2015 to March 29, 2016) of SMAP
soil moisture, groundwater level, and precipitation were analyzed. The
majority of the precipitation for this area occurs between April and Oc-
tober (blue bars in Fig. 2(b)), and the expected correlation of associated
increases in the soil moisture and groundwater level with increased
precipitation are clearly observed (gray and red lines, respectively in
Fig. 2(b)).

Precipitation is thus verified to be a driver of increases in soil mois-
ture and groundwater levels (USFWS, 2006; NASA, 2014). The ground-
water and soil moisture data also indicate summer to be the driest
season, with the lowest soil moisture and groundwater levels occurring
in September, because evapotranspiration throughout the summer has
removed significant amounts of water from both the surface and under-
ground (USFWS, 2006) (Fig. 2(b)). Despite low precipitation after Octo-
ber, soil moisture increased during the winter, which could be
attributed to weakened evapotranspiration as atmospheric tempera-
tures drop (USFWS, 2006), but there is also an increase in groundwater
level that is most likely also influential on the observed change in soil
moisture. Overall, the soil moisture from SMAP and the groundwater
level are highly correlated (R-squared value: 0.80 significant at p <
0.001, n (number of samples): 364, ¢ (standard error): 0.04, intercept:
0.67 £ 0.10 (95% confidence), slope: 7.8e —03 4 4.0e — 03 (95% confi-
dence)) for most time of the year. Based on this close relationship be-
tween soil moisture and groundwater level in the GDS, we can equate
comparisons of groundwater level changes with SAR backscattering in-
tensities and comparisons of soil moisture changes with SAR backscat-
tering intensities. With this correlation established we can now
explore how groundwater levels change in relationship to backscatter-
ing characteristics as the last segment of the three-way comparison.

4.2. Relationship between SAR intensity and groundwater level changes
The hydrologic changes in the GDS affect the SAR backscatter returns

during both high water (winter) and low water (summer) seasons. Re-
gardless of the operating radar wavelength SAR intensity images

acquired in wet and dry seasons exhibit obvious differences. C-band
Radarsat-1 and L-band ALOS PALSAR intensity images obtained on 01/
26/2007 (Fig. 3(a)) and 12/22/2006 (Fig. 3(c)), respectively, exhibit
strong radar returns due to increased double-bounce backscattering,
particularly over the northern and western GDS. This area is close to
the inflow of streams and ditches, and during the wet season flooding
causes these channels to fill and run-off inundates the flat surfaces of
the forested wetlands. However, the Radarsat-1 (Fig. 3(b)) and ALOS
PALSAR images (Fig. 3(d)) acquired in the summer look much darker
when compared with the SAR intensity images obtained in the wet sea-
son. As previously mentioned, the water removal caused by the summer
evapotranspiration and continuous discharge through ditches contrib-
utes to the observed difference. Visual inspection of the SAR intensity
images indicates that the HH polarized SAR signals are capable of pene-
trating the forest canopy and reaching the ground surface to interact
with soil layers.

When we have SAR intensity time-series from C- and L-band sen-
sors, we can compare the averaged SAR intensity over the GDS with
the groundwater level or surface water level measurements. The
water level measured in gages located along rivers and ditches does
not reflect hydrologic changes inside the swamp, as inundation over
flat surfaces lags behind the fast-changing surface water movements
in directed channels (Kim et al., 2009). This explains why the measured
surface water level from these gages did not have a high correlation
with averaged SAR intensity. On the other hand, the groundwater
table changes at well sites had a close relationship with changes ob-
served in SAR intensity images. A long-term time-series of C-band
Radarsat-1 SAR intensity returns from images acquired from 1998 to
2008 were averaged over the whole GDS, excluding human-disturbed
areas. A positive correlation between these intensity values and the
groundwater level is observed as intensity increases with the rising
groundwater (Fig. 4(a)). If we focus on the time frame from 2006 to
2008, due to the sparse Radarsat-1 acquisition before 2006, this high
correlation becomes obvious (Fig. 4(b)). In many wetlands the seasonal
vegetation change can be influential on SAR intensity, but the SAR inten-
sity acquired in the same season should have similar values (e.g., Kwoun
and Lu, 2009). When this is performed in the GDS, SAR backscatter ac-
quired in January of 2007 and 2008 have an evident difference with a
drop of as much as 2 dB (decibel) in 2008. This means that a seasonal
vegetation change is not responsible for the observed change in the for-
ested swamp. This effect is caused by a drop in the groundwater level of
2 m between these two periods, and the related soil moisture change
contributed to the observed variation in SAR intensity.

The R-squared value from a linear regression between groundwater
level and C-band SAR intensity was 0.76 (R-squared value is significant
at p <0.001, n: 30, &: 0.32, intercept: —0.26 + 0.47 (95% confidence),
slope: —0.71 £ 0.16 (95% confidence)), indicating high correlation be-
tween the two parameters (Fig. 4(c)). The mean and standard deviation
plot (calculated based on Kasischke and Fowler, 1989; Fig. 4(d)) shows
that the low mean values of SAR intensity (during the dry season) main-
tained small standard deviations and high SAR intensity returns (during
the wet season) had high standard deviations. This was due to the effect
of combined scattering over heterogeneous vegetation cover (e.g.
swamp forest in the west that is flooded during the wet season and
shrub land in the east that is not flooded but moistened during the
wet season).

The L-band PALSAR intensity time-series results in a similar pattern
(Fig. 5(a)) to the C-band Radarsat-1 observations. The groundwater
level rise and resulting increase in soil moisture elevated the SAR back-
scatter intensities while the intensity values during the dry season de-
creased. The R-squared value between ground water level and L-band
SAR intensity was 0.67 (Fig. 5(b); R-squared value is significant at p <
0.001, n: 13, standard error: 0.61, intercept: —1.91 + 1.75 (95% confi-
dence), slope: —1.29 4 0.59 (95% confidence)), and the mean and stan-
dard deviation plot (Fig. 5(c)) is comparable to that from C-band data
(Fig. 4(d)).
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Fig. 3. Radarsat-1 SAR intensity acquired in (a) 2007.01.26 and (b) 2007.08.06. ALOS PALSAR intensity acquired in (c) 2006.12.20 and (d) 2010.08.17.

When we averaged the SAR backscattering returns according to dif-
ferent categories defined by vegetation cover (Fig. 6), the temporal var-
iations follow the fluctuations of groundwater level regardless of
operated radar frequency (Fig. 6(a, b, ¢)). Based on these results, the
SAR intensities corresponding to Cypress Gum communities are the
most sensitive to hydrologic changes both on the surface and within
the subsurface of the forested swamp, while areas populated by Pine Po-
cosin were least sensitive. Nevertheless, the SAR intensity over all the
vegetation types is still mostly influenced by hydrologic changes in
the wetlands. Cypress Gum forests are inundated with shallow
water in winter, so larger backscattering coefficients and their
close relationship with groundwater levels can be attributed pri-
marily to the double bounce scattering in the swamp forests, and
to a lesser extent reflect effects of the increased soil moisture. How-
ever, other communities (Pine Pocosin and Atlantic White Cedar)
are generally not submerged during wet seasons, and consequently
are less influenced by the double bounce scattering. Therefore, the
increased water content of the seasonally saturated soils over the
shrub land and upland forests is likely the primary cause of the cor-
relation between SAR backscattering intensity and groundwater
level changes.

We are also able to identify the vegetation type defined as disturbed
fire from the anomalous SAR intensity signature (red ellipse in Fig. 6(c))
observed in mid-2008 and 2009. Records indicate that a wildfire in the
GDS lasted from June to October of 2008 and caused extensive damaged
in the region. The burned forest and charred remnants create a rougher
surface than canopy and shrub land, and this is captured by the SAR in-
tensity data as an increase when this roughness was magnified in mid-
2008 from the wildfire. After clean-up of the damaged areas (Laing et al.,
2011), the SAR intensity was decreased with the new growth of vegeta-
tion in the area. The R-squared value of a linear regression between the
SAR intensity averaged for each vegetation cover and the groundwater
level (Table 1) highlights that most vegetation covers have strong corre-
lations. Cypress Gum, which is the most susceptible to seasonal inunda-
tion, has larger values of 0.63, 0.81, and 0.69 for Radarsat-1 and ALOS
PALSAR intensity, respectively. Maple Gum has similar values, but At-
lantic White Cedar and Pine Pocosin, which are less exposed to the sur-
face water, have smaller values for Radarsat-1 intensity. Because of this
we cannot completely rule out the effect of surface water on the rela-
tionship between C-band SAR intensity and soil moisture. However,
ALOS PALSAR intensity does not have considerable difference of R-
squared values among major vegetation covers (Atlantic White Cedar,
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Cypress Gum, Maple Gum, Pine Pocosin). This consistency means that L-
band SAR intensity has better penetration capability over the vegetated
wetland and most of the SAR returns persistently come from the subsur-
face soil column, which can be used to estimate soil moisture in areas
populated by Atlantic White Cedar and Pine Pocosin. Even Upland
Pine, which prospers in the levee area on the western edge of the

GDS, and is not influenced by the surface water, has a higher R-squared
value of 0.62 for ALOS PALSAR intensity. The disturbed fire, as expected,
has the lowest value of 0.20 for PALSAR intensity. L-band SAR intensity
is thus better suited to finding a close relationship with soil moisture
content and can exclude the effect of seasonal standing surface water
when vegetation maps are used in conjunction with intensity data.
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4.3. Extracting the inundated area from InSAR coherence

InSAR coherence can be used to characterize the hydrologic condi-
tions related to inundation in the GDS, but because C-band Radarsat-1
did not maintain high coherence in the swamp, we focused on the L-
band ALOS PALSAR datasets. Coherence observations over wetlands
(e.g., Lu and Kwoun, 2008) differ greatly between wet and dry seasons,
so the SAR signals acquired in different seasons do not exhibit consistent
backscattering. Considering that the GDS is nearly dried out during
summer, the InSAR coherence from SAR datasets between wet and
dry season was insignificant. When we calculated InSAR coherence
from SAR datasets acquired in the wet season, we found that areas sub-
ject to double-bounce scattering had high coherence (Fig. 7(a, b)). Al-
though the InSAR coherence observations from two different periods
(04/01/2010 to 10/02/2010 and 10/02/2010 to 02/17/2010) present lit-
tle spatial difference, the maps consistently indicate that the western
and northern regions of the GDS were exposed to double-bounce scat-
tering. We extracted those areas with high coherence using the thresh-
old of 0.35, which was iteratively and empirically determined (Fig. 7(c,
d)). We anticipate that the areas prone to double-bounce scattering
during wet season were flooded by the elevated surface water level
and run-off events. These high-coherence maps (Fig. 7(c, d)) approxi-
mate the extent of inundation. From the maps, we can see the ditches
disrupt water movement across the western swamp. The southeastern
area is also observed to be relatively dry, even in the wet season,

because the ditches and canals capture eastward water coming from
the wetlands. However, determining the flooded areas based on the em-
pirical coherence threshold requires further refinement and validation
when the ground-truth information through field survey or other sup-
plementary remote techniques is available. We aimed to extract the
non-inundated areas in the GDS, rather than those subject to seasonal
surface water impoundment, for comparison of the soil moisture with
the InSAR products. In this way, we can minimize the effect of the sea-
sonal run-off events on the SAR/InSAR products.

4.4. Estimating the surface water level changes in the inundated areas and
groundwater level changes from InSAR time-series

In the areas with high InSAR coherence, the interferometric phase
measurements can be related to relative water level changes in the for-
ested wetland and soil moisture changes in the Pine Pocosin (communi-
ties of shorter vegetation, pines and shrubs). Due to double-bounce
scattering in inundated areas, centimeter-level water level changes be-
neath the forest canopy can be detected (Fig. 8(a, b)). Lines of a-a’, b-b’,
and c—c’ are located in the areas where water run-off from ditches over-
flows onto the flat wetland, and their profiles show the variations in
water level along their distances (Fig. 8(c)). The relative water level
changes along line a-a’ from 04/01/2010 to 10/02/2010 decreased,
and those along line b-b’ and c-c’ between 11/17/2010 and 02/17/
2011 increased. Points a, b’, and ¢’ are located at sites close to the
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incoming water from ditches, and their nearby areas have large relative
water level changes during the wet season. The southeastern area (red
box in Fig. 8(b)) is not affected by surface water, but the interferometric
results over the non-inundated areas can be associated with changes in
soil moisture induced by changes in the groundwater level. Although
the interferogram of Fig. 8(b) could keep high spatial coherence over
the Pine Pocosin dominated areas (red box), most remaining InSAR
pairs have low coherence due to the lack of stagnant surface water in
the vegetation. We therefore need to introduce the concept of point-tar-
get scatterers that exhibit strong and persistent backscattering returns
for estimating time-series surface changes induced by seasonally satu-
rated soils.

With InSAR time-series measurements from 5 image pairs of 05/17/
2010 to 07/02/2010, 07/02/2010 to 08/17/2010, 10/02/2010 to 11/17/
2010, 11/17/2010 to 02/17/2010, and 01/02/2011 to 02/17/2011, we
can estimate the vertical component of motion from the projection of
line-of-sight (LOS) InSAR measurements to a vertical plane calculated
from the satellite incidence angle, using the SBAS approach. Unfortu-
nately, the southeastern area, mostly covered by short vegetation,
could not maintain high coherence in our SAR datasets. More InSAR
pairs can make our solution more rigorous while suppressing error
components, but we could only select 5 due to this limited coherence.
Before applying the SBAS method, we initially extracted Persistent Scat-
terer (PS) points over the whole GDS. The PS points with consistently
strong backscatter and high coherence can be introduced as a reference
in the case that the in situ information is insufficient. We calculated the
amplitude dispersion index using the equation:

D, =

SIS

4)

where 0, and a is the standard deviation and mean of the time-series
SAR amplitudes, respectively. From the initial PS points we selected
those with small amplitude dispersion indexes and high average coher-
ence (Fig. 9(a)). Because we only focus on the southeastern area, the PS
points in other regions, which are influenced by surface water, are not
considered for this analysis. To choose the final PS points, we assumed
that elevated areas will have less groundwater level changes compared
to nearby low-lying wetlands, because the localized peaks (i.e. tree
islands under non-fluvial condition) are less sensitive to fluctuations
of groundwater level and the low-lying areas will be more impounded
by the ground water (Gusyev and Haitjema, 2011). A 30 m resolution
digital elevation model (DEM), such as shuttle radar topography mis-
sion (SRTM), is not sufficient for picking the local elevation peak, and
we instead used a light detection and ranging (LiDAR) DEM with
1.5 m resolution. We then picked a single PS point (red dot in Fig.
9(b)) that is characterized by low amplitude dispersion, high average
InSAR coherence, and high elevation and additionally, is located near
the groundwater measurement well (cyan triangle in Fig. 9(b)). The
groundwater level changes at this well site are calculated using a
time-series method. Because we selected this PS point based on high
InSAR coherence from limited InSAR pairs, the coherence values are
rather constant (>0.3) throughout a short acquisition period (May
2010-Feb 2011). Moreover, the temporal change of InSAR coherence
for this point can be mostly attributed to the variation in perpendicular
baselines between InSAR pairs. The InSAR coherence was only used as a
threshold to identify PS points in this Pine Pocosin community.

5. Discussion

The hydrologic change in the GDS is a key driver of changes in the C-
and L-band SAR intensity. Other effects, including aboveground

biomass, tree structure, canopy openings, and vegetation density should
not be disregarded, but the high correlation between SAR intensity and
groundwater level change (Figs. 4, 5) shows that transmitted SAR sig-
nals are mostly influenced by double-bounce scattering in the inundat-
ed areas and the variation of soil moisture content over non-inundated
regions. From ALOS PALSAR HV polarized datasets, which are sup-
posed to be sensitive to the surface and volume scattering of the
forest canopy, we could not find a meaningful relationship be-
tween two parameters (i.e., SAR backscattering intensity vs
groundwater level). HH polarized SAR signals from Radarsat-1
and ALOS PALSAR could, however, penetrate the forest canopy
and obtain echoes from the ground surface. Even though the
penetration depth to soil layers in the swamp is on the order of
sub-wavelength, the changes in groundwater levels can drive var-
iations in the soil moisture, which, in turn, modify the SAR back-
scattering intensity.

Previous studies have been successfully conducted on the correla-
tion of C- or L-band SAR backscatter and aboveground biomass or soil
moisture in wetlands (Kasischke et al., 2003, 2009, 2011), but HH polar-
ized SAR backscatter and long-term soil moisture in a wetland could not
be thoroughly analyzed due to the limited observations of moisture
contents in a soil layer. With the aid of the spaceborne soil moisture
datasets from SMAP, the results from our study showed that HH polar-
ized SAR backscatter has a close relationship with groundwater level
changes and ultimately soil moisture changes. Cross-polarized (HV,
VH) SAR signals can be more sensitive to the biophysical parameters
(i.e. aboveground biomass) on the surface of wetlands (Kasischke et
al., 2011) due to their scattering characteristics, including the mixed
(volumetric) effects of vegetation and soils. On the other hand, our find-
ings indicate that co-polarized (HH) SAR signals from Radarsat-1 and
ALOS PALSAR are more influenced by soil moisture contents due their
larger penetration depth in vegetated wetlands. Our results also agree
well to a previous study that found positive correlations between co-po-
larized (VV) ERS SAR backscatter and soil moistures in vegetated Alas-
kan wetlands (Kasischke et al., 2009). Like the Alaskan wetlands
(Kasischke et al., 2009), across the GDS increases in the water table cor-
respond to an increase in a soil moisture and surface soil inundation,
which results in the increase of SAR backscatter. It can be argued that
the increased co-polarized SAR intensity is completely attributed to
the double-bounce scattering in forested swamp. Because the SAR in-
tensity over the Cypress Gum, which is the seasonally inundated associ-
ation, was highly sensitive to the hydrologic changes, the argument can
be partially true. During high water season (winter), many parts (most-
ly forested by Cypress Gum) of the GDS are covered by standing water.
Therefore, using a vegetation cover map (Fig. 1(b)), we had to distin-
guish the effects of standing water from the variations in soil moisture
to properly estimate the correlation between SAR backscatter and soil
moisture contents. The SAR intensities over non-inundated (Pine Poco-
sin in the southeastern GDS) and occasionally inundated (Maple Gum)
communities maintain high correlation with groundwater level chang-
es (Fig. 6), implying that the soil moisture is influential on the backscat-
tering of SAR signal. When water table remains low in the low water
season (summer), SAR backscatters over the organic soils of peatlands
are also low due to the reduced reflection from soil layers. However, in-
creasing water table during high water season (winter) leads to the in-
crease of moist soils as well as SAR backscatter. Nevertheless, the
vegetation moisture content itself should not be ignored. The increased
moisture content in the vegetation during the wet season can similarly
affect the SAR intensity. With only the single polarized SAR datasets, it is
difficult to distinguish the two effects of vegetation and soil saturation.
Additionally, the wet season around January 2008 was the driest in
the past 10 years, as indicated by the groundwater level (Fig. 6(a)).

Fig. 6. Comparison between groundwater level and average Radarsat-1 SAR intensity averages by vegetation types, from (a) 1998 to 2008, and (b) 2006 to 2008 (red box in panel (a)). (c)
Comparison between groundwater level and ALOS PALSAR intensity by vegetation types. (For interpretation of the references to color in this figure legend, the reader is referred to the web

version of this article.)
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R? values and regression results of SAR backscatters according to vegetation covers vs groundwater level.

Vegetation cover R? values and regression results (95% confidence) SAR backscatter vs groundwater

Radarsat-1 backscatter (1998-2008) (n: 30)

Radarsat-1 backscatter (2006-2008) (n: 22)

ALOS backscatter (n: 13)

Atlantic White
Cedar
Cypress Gum
Disturbed Fire
Maple Gum

Pine Pocosin

Upland Pine

0.49 (p <0.02, &: 0.36, intercept: —1.30 £ 0.53,
slope: —0.44 + 0.17)

0.63 (p <0.004, &: 0.75, intercept: 2.01 + 1.11,
slope: —1.19 £ 0.36)

0.50 (p < 0.004, &: 0.39, intercept: —1.10 £ 0.57,
slope: —0.48 + 0.19)

0.67 (p <0.004, &: 0.37, intercept: —0.39 £ 0.54,
slope: —0.64 + 0.17)

0.47 (p <0.02, &: 0.34, intercept: —1.92 £ 0.49,
slope: —0.34 £ 0.16)

0.52 (p <0.02, &: 0.32, intercept: —1.26 £ 0.47,
slope: —0.41 + 0.15)

0.76 (p < 0.004, &: 0.25, intercept: —1.05 4 0.46,
slope: —0.54 + 0.14)

0.81 (p <0.001, &: 0.59, intercept: 3.18 £ 1.10,
slope: —1.53 + 0.34)

0.77 (p < 0.001, &: 0.28, intercept: —0.73 £ 0.51,
slope: —0.62 + 0.16)

0.84 (p < 0.001, &: 0.27, intercept: —0.00 £ 0.51,
slope: —0.77 + 0.16)

0.66 (p < 0.004, ¢: 0.29, intercept: —1.65 + 0.53,
slope: —0.49 + 0.17)

0.62 (p <0.004, ¢: 0.31, intercept: —1.07 & 0.57,
slope: —0.48 £ 0.18)

0.69 (p <0.002, &: 0.47, intercept: —2.99 + 1.35,
slope: —1.02 + 0.46)

0.69 (p <0.002, &: 0.99, intercept: 1.54 + 2.85,
slope: —2.18 + 0.96)

0.20 (p <0.02, &: 1.09, intercept: —3.07 + 3.13,
slope: —0.79 + 1.06)

0.69 (p < 0.004, &: 0.60, intercept: —1.98 £ 1.72,
slope: —1.30 + 0.58)

0.60 (p < 0.004, &: 0.47, intercept: —3.36 + 1.35,
slope: —0.84 + 0.46)

0.62 (p <0.004, &: 0.67, intercept: —1.83 4+ 1.91,
slope: —1.24 £ 0.17)

June of 2008 and lasted for four months. Time-series of SAR intensities,
that we found can alternatively replace the groundwater level measure-
ments, are extremely valuable for evaluating the risk of the wildfire

The hydrologic input for the wet season and hydroperiod is crucial for
maintaining the appropriate soil moisture in peatlands throughout the
year. The decreased soil moisture leaves the wetland vulnerable to wild-

fires and we see this manifest with the severe wildfire that occurred in

Fig. 7. InSAR coherence maps during (a) 2010.04.01 and 2010.10.02, and (b) 2010.10.02 and 2011.02.17. Inundation area estimated from InSAR coherence from the pairs of (c) 2010.04.01
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and c-c’. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

We can delineate the inundated and non-inundated areas using the
InSAR coherence, because high coherence is achieved in the forested
swamp under the influence of double-bounce scattering. The flooding
map during wet season (Fig. 7) can provide useful information for char-
acterizing the wetland, when comparing it with the vegetation cover
map (Fig. 1). The most dominant vegetation community in the swamp
was the Cypress Gum before the development of the GDS began in
18th century. As seen in the lower part of Fig. 7(c) and (d), the
human-made ditches interrupt the natural water movement from
west to east. The eastern part of the inundated areas, including areas
damaged by the 2008 and 2011 wildfires, remained drier compared to
the undisturbed condition where the natural sheet flows saturate the
region. The dry condition along with selective logging triggered the
transformation of the vegetation community from Cypress Gum to

Maple Gum. In the western part, which is often flooded by standing
water during the wet season, the Cypress Gum could still prosper. How-
ever, the eastern part across the inundated area is currently dominated
by the Maple Gum, and it is further expanding its community over the
GDS due to human-made waterways and ditches providing drainage
that decreases soil moisture.

The relative surface water level changes can be measured using
InSAR techniques outlined in this study, and the results could be used
to monitor hydrologic changes in the inundated area and identify the lo-
cation of the water inflow (Fig. 8). In the dissected wetlands, these
InSAR methods indicate that water levels rise or drop unevenly with
the spatial gradient of relative water level changes (Fig. 8(a, b)).

Contrary to the Everglades in Florida, there are no water level gages
located inside the swamp of our study area. This restricts the capability
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to continuously monitor the water level fluctuations and evaluate the
hazard risk induced by the abrupt run-off and flooding. We have
shown that InSAR can help estimate the long-term hydrologic changes
with high spatial resolution when local ground based measurements
are unavailable. Furthermore, when we can create a time-series from
InSAR measurements, we can indirectly estimate the soil moisture con-
tent from groundwater level. Based on the assumption that the PS
points are stable and do not have a significant groundwater level
change, we can also calculate vertical motion using this InSAR time-se-
ries approach (Fig. 9(c)). However, the coherence from InSAR pairs re-
lated to Jan 2 of 2011 acquisition during the wettest season is
relatively low compared to other InSAR pairs, because the wet condition
in the peatland altered the scattering characteristics and disturbed the
consistent phase measurements. The changes in groundwater level
and vertical component retrieved from InSAR pairs between two SAR
acquisition dates, excluding the relatively low coherence InSAR pairs,
have a close relationship (Fig. 9(d); R-squared value: 0.73). Because
we have only a single groundwater well inside the peatland and the
InSAR coherence is often lost throughout years, we cannot extend our
comparison between the changes in groundwater level and interfero-
metric phase measurement to a large spatio-temporal scale. However,
based on the limited comparison between two parameters, the vertical
movements from InSAR appear to have high correlation with the
groundwater level changes (Fig. 9(d)) and also therefore the variations
in soil moisture content. If the average SAR intensity can be used to find
the relationship with groundwater level changes in the reduced resolu-
tion, then the InSAR time-series method could be utilized to character-
ize the variation in the water table at pin-pointed locations. The main
limitation was found to be poor InSAR coherence when temporal sepa-
rations of the SAR images are too long and the vegetation conditions
change between leaf-on and leaf-off seasons. In the large scale, where
averaging SAR intensity over the entire GDS was performed, the season-
al vegetation effect was ignorable. However, in the small scale over the
Pine Pocosin communities, the seasonal vegetation changes can still af-
fect our InSAR time-series results.

6. Conclusion

The GDS is a peatland with a long history of development. Although
hydrologic change is crucial for conserving the peatland, its dynamics
have not been thoroughly unveiled by the use of remote sensing tech-
nology, especially radar sensors. Our SAR observations can characterize
the seasonal hydrologic changes, delineate the inundated area, measure
the relative surface water level changes in the inundated area, and esti-
mate the changes in groundwater levels based on the close relationship
discovered in this study between the SMAP soil moisture and local
groundwater table measurements. Our study shows the possibility
that soil moisture changes can be detected by the averaged SAR intensi-
ty and InSAR time-series method. Our results partially explain the trans-
formation of vegetation in the GDS as a result of the dried soils created
by the effects of anthropogenic drainage features such as ditches and ca-
nals and the wildfire that occurred in 2008.

Future studies cannot be completed without more extensive and de-
tailed field measurements of soil moisture, biomass, and surface water
level changes in the GDS. Even without the “ground-truth” measure-
ments, we live in the wake of new advanced radar sensors including
SMAP, C-band Sentinel-1A/B, L-band ALOS-2 PALSAR-2, and upcoming
S/L-band NISAR (NASA-ISRO SAR Mission). SMAP particularly, can sup-
ply the reference information about soil moisture from space, and high-
resolution SAR data can supplement the passive radar sensor (radiome-
ter) of SMAP as was originally planned for that mission. In addition, SAR
sensors with full polarization (HH, HV, VH, VV) will enhance our under-
standing of vegetation structure, biomass, and even soil moisture. Ad-
vancements in the capabilities and data products provided by SAR
sensors may eventually provide information like that presented in this
study, but until then, the techniques used here to observe complicated

associations and processes in wetland hydrology can be used to better
understand and thus preserve the sensitive ecosystems of our vanishing
peatlands.
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