
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 55, NO. 2, FEBRUARY 2017 1053

On the Accuracy of Topographic Residuals
Retrieved by MTInSAR

Yanan Du, Lei Zhang, Guangcai Feng, Zhong Lu, and Qian Sun

Abstract— Topographic residuals in differential interferomet-
ric synthetic aperture radar (InSAR) measurements are mainly
caused by inaccurate external digital elevation model (DEM).
Accurate separation of the phase component contributed by
topographic residuals plays an important role in the retrieval of
deformation time series from InSAR observations. Even though
the residuals can be modeled and estimated in the framework
of multitemporal SAR interferometry (MTInSAR), it is not clear
what an optimal processing strategy is and how accurate the
estimation can reach. We analyze here the factors that affect
the accuracy of the retrieved DEM residuals by applying four
commonly used MTInSAR methods in a series of simulated
scenarios. The results indicate that besides the quality of inter-
ferometric observations, the thresholds of spatial and temporal
baselines, the diversity of spatial baseline lengths, the connectivity
of interferogram network, and improper deformation model also
fluctuate the accuracy of the retrieved topographic residuals.
According to these affecting factors, this paper sheds light on
an optimal approach to reliably retrieve accurate topographic
residuals under MTInSAR framework.

Index Terms— Digital elevation model (DEM) error
estimation, multitemporal synthetic aperture radar
interferometry (MTInSAR), topographic residuals.

I. INTRODUCTION

BY VIRTUE of its high precision and wide coverage,
differential interferometric synthetic aperture

radar (InSAR) technology has been widely used in monitoring
land deformation caused by either natural or anthropogenic
processes, such as volcanic eruption, earthquakes, landslides,
and ground subsidence [1]–[7]. However, the interpretation
and analysis of DInSAR measurements are affected by
spatial–temporal decorrelation, atmospheric artifacts,
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orbit inaccuracy, topographic phase residuals, and phase
unwrapping errors. To minimize or eliminate these influences,
multitemporal InSAR (MTInSAR) methods involving
analyzing large sets of SAR images have been proposed,
such as the small baseline subset (SBAS), permanent
scatterer (PS), and hybrid SBAS/PS techniques [8]–[15].
Some techniques work directly on the wrapped phases
of high-quality scatterers [8]–[11], while some can get
deformation from unwrapped phases at selected pixels in
interferograms with moderate spatial and temporal baselines
[12]–[14]. For all MTInSAR techniques aiming to retrieve
deformation signal, the phase component raised by inaccurate
external digital elevation model (DEM), i.e., topographic
residuals, should be estimated and removed from either
wrapped or unwrapped phase observations [8]–[15]. The
topographic residual that is a baseline-dependent component
and usually modeled as a parameter in MTInSAR can lead to
phase discontinuities and even coherence loss in the wrapped
differential interferograms, resulting in a failure of phase
unwrapping. In the scenarios of geohazard (e.g., landslides)
mapping, inaccurately estimated topographic residuals can be
mistaken as geohazard induced deformation signal, and likely
distort the interpretation of its spatial–temporal behavior.
Accurate estimation of topographic residuals can not only
provide refined height product from SAR data but also
improve the success rate of phase unwrapping and the quality
of MTInSAR derived deformation time series [16], [17].

However, current MTInSAR techniques cannot promise an
accurate estimation of the topographic residuals. For example,
the conventional SBAS based on interferograms with small
spatial and temporal baselines to reduce decorrelation cannot
well estimate DEM error when the perpendicular baseline is
time dependent, such as the case depicted in [18] and [19].
In addition, the DEM error estimated by conventional SBAS
method is sensitive to the interferograms network, which is
relevant to the spatial–temporal baseline thresholds among
SAR acquisitions [20]. Moreover, improper deformation model
can also bias the estimation of topographic residuals from SAR
data [21].

We dedicate here to explore the factors having influence
on the estimation of topographic residuals. By analyzing the
performance of four popularly used MTInSAR models under
a large amount of simulated scenarios, we conclude that the
accuracy of InSAR derived topographic residuals is closely
related to the factors such as the baseline thresholds, interfer-
ogram quality, interferogram network subset, and deformation
models. This paper not only raises the awareness of short-
comings associated with existing MTInSAR models, but also
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sheds light on the possible ways to reliably retrieve accurate
topographic residuals under MTInSAR framework. We start
with a brief description of how the topographic residuals are
modeled under MTInSAR framework. Then we analyze the
accuracy of these models to identify the relationship between
topographic residuals and influence factors through a series of
validation experiments. Finally, the results and conclusions are
obtained to give guidance for accurate DEM error estimation.

II. MODELS FOR TOPOGRAPHIC RESIDUAL

ESTIMATION IN MTInSAR

Given N + 1 SAR images, N interferograms will be
generated under single-master MTInSAR framework and M
(M ≥ N) under multiple-master MTInSAR framework. Obser-
vations for single-master MTInSAR [8]–[11] are usually the
wrapped phases at PSs, while both wrapped and unwrapped
phases can be used as observations for the multiple-master
MTInSAR [7], [12], [13], [15]–[20]. The differential inter-
ferometric phase δφtA,tB between two SAR acquisitions at
time tA and tB can be expressed as

δφtA,tB

= W {δϕ tA,tB }
= W

{
δϕtA,tB

def + δϕtA,tB
topo + δϕtA,tB

orb + δϕtA,tB
aps + δϕtA,tB

noi

}
= W

{
−4π

λ

(
dtA − dtB

) − 4π BtA,tB⊥
λRsinθ

�z + δϕ
tA,tB
orb

+δϕtA,tB
aps + δϕtA,tB

n

}
(1)

where δϕtA,tB is the unwrapped phase and W {·} is the wrap
operator. δϕ

tA,tB
def , δϕ

tA,tB
topo , δϕ

tA,tB
orb , δϕtA,tB

aps , and δϕtA,tB
n repre-

sent the phase components contributed by the deformation
along the line of sight direction, topographic residual, orbit
error, atmospheric delay, and noise, respectively. dtA and dtB

represent the deformation at tA and tB . BtA,tB⊥ is the perpendic-
ular baseline, and �z is the DEM error. R, θ , and λ represent
the distance between satellite and ground target, incidence
angle, and wavelength, respectively.

A. Permanent Scatterer InSAR—Model 1

PSInSAR, a typical single-master MTInSAR technique, was
proposed in [8] and [9], aiming at retrieving deformation from
persistent scatterers (PSs) at a full resolution scale. The DEM
error and mean velocity of deformation are estimated with a
simple periodogram by searching a predefined 2-D solution
space [8]

argmax
�z,v

{
|γ | = 1

N

∑N

n=1
e jδφn ·e− j

�
4π ·�z
λRsinθ Bn⊥+ 4π

λ tn·v
�}

(2)

where δφn and Bn⊥ represent the wrapped interferometric
phase and perpendicular baseline of nth interferograms. Pro-
vided that the predefined model is consistent with the real
ground deformation, the accuracy of the estimated DEM error
is generally high [22], [23].

B. Conventional SBAS—Model 2

Assuming that M interferograms are obtained from N + 1
SAR images with a spatial–temporal baseline thresholds,
the M differential interferograms are unwrapped successfully
and the residue orbit phases are removed with a polynomial.
The unwrapped differential phase δϕ of any pixel can be
expressed as follows [13], and named the “original unwrapped
phase” hereafter:

δϕ = δϕdef + δϕtopo. (3)

In (3), deformation component δϕdef can be modeled using
analytic functions such as a third-order polynomial with three
unknown parameters, i.e., the mean velocity v̄ , the mean
acceleration ā, and the mean acceleration rate �ā at time ti
with an interval of �ti with respect to the reference acquisition
time t0

δϕ
ti
def = v̄�ti + 1

2
ā�t2

i + 1

6
�ā�t3

i . (4)

And the observation equation of M differential interfero-
grams can be obtained by combining (1), (3), and (4)

δϕ = [B H, c]p (5)

where B is an M × N matrix created in the following
way. If the kth interferogram constructs between the i th and
j th SAR images (i < j), then the value between column i and
j − 1 of B equals the time interval of adjacent SAR images.
p is the vector of unknown parameters equal to
[v, ā,�ā,�z]T , and c is the parameter of residue topographic
phase equal to [(4π/λRsinθ)B1⊥(4π/λRsinθ)B2⊥ . . .
(4π/λRsinθ)B M⊥ ]T . H is an N×3 matrix as follows:

H =

⎡
⎢⎢⎢⎣

1 �t1/2 �t2
1/6

1 (�t2 + �t1)/2 �t3
2 − �t3

1/(6t2 − 6t1)
...

...
...

1 (�t N +�t N−1)/2 �t3
N −�t3

N−1/(6tN −6t N−1)

⎤
⎥⎥⎥⎦.

(6)

It is worth noting that the unknown parameters can be
further simplified to the mean velocity and the DEM error,
which have been adopted in many applications [24]. We
can obtain the DEM error with a least squares method by
treating atmosphere and decorrelation artifacts as stochastic
noises [13]. However, the accuracy of the estimated DEM
error is sensitive to baseline configuration of the selected inter-
ferograms and inaccurately estimated DEM error can further
affect the retrieval of deformation time series [20]. Meanwhile,
according to [18], the estimation is also not accurate when the
baseline history has an intense time-dependent relationship.

C. Samsonov’s Model—Model 3

A model simultaneously estimating the DEM error and
velocity time series was proposed in [18] and [19] to deal
with the case that perpendicular baselines of ALOS/PALSAR
interferograms are time dependent. Similar to conventional
SBAS, this model is also based on the original unwrapped
phase δϕ of M interferograms, but with different unknown
parameters, which includes N velocities between adjacent
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TABLE I

COMPARISON BETWEEN DIFFERENT MTINSAR MODELS

acquisitions, i.e., V to be jointly estimated together with
DEM error. Accordingly, the design matrix is also different,
which is described as

δϕ = [Bc] · [V �z]T (7)

where V is the velocity vector to be estimated in a form
of [v1v2 . . . vN ]T . B is an M × N matrix reflecting the
phase contribution of interval velocities, and c is a vector
with M elements, having the same form as (5), reflecting
the contribution of topographic residuals. Both components
constitute the design matrix of this model.

Unlike the least squares used in (5) of conventional SBAS,
the singular value decomposition (SVD) is applied to jointly
estimate DEM error and interval deformation rates. As the
observation system is rank deficiency, the estimation stability
of this model can be affected by the connectivity of interfer-
ogram network.

D. Fattahi’s Model—Model 4

Fattahi and Amulung [20] proved that the accuracy of the
estimated DEM error in conventional SBAS is sensitive to the
interferogram network. To tackle this problem, they estimate
the DEM error based on the velocity vector derived from the
original unwrapped phases of M interferograms. First, they
estimated the velocity vector V = [v1, v2, . . . , vN ]T from the
original unwrapped phases with SVD and then estimated DEM
error of each coherent pixel with the following model:

V = A · X + n (8)

where we have (9) and (10), shown at the bottom of the page.
This linear equation can be solved by least squares thanks

to the redundant observations. Since the model can estimate
DEM error from phase components in successive time inter-
vals, it can well reduce the sensitivity of DEM error estimation

in the interferogram network. In other words, no matter how
the selected interferogams with short baselines are connected,
the estimation of DEM error appears to be stable. However, the
performance of this model is also affected by the connectivity
of interferogram network and the discrepancy between the
deformation model used and the real deformation, which will
be analyzed in Section III.

III. ACCURACY ANALYSIS

A. Baseline Thresholds

The function models of MTInSAR, except PSInSAR
methods in [8] and [9], can be expressed in a general form as
follows:

B = A · X + n (11)

where the design matrix and unknown parameters vary
with different models. For example, there are four unknown
parameters in conventional SBAS (Model 2) and N + 1 in
Samsnovo’s model (Model 3). Fahatti’s model (Model 4) has
two sets of unknown parameters. One is the velocity vector
with N unknowns, and the other set is the same as those used
in Model 2. Table I summarizes the key features of the four
MTInSAR models that will be used for retrieval of topographic
residuals in the following section.

It is worth noting that we can obtain the result of
Models 2 and 4 by least squares if the design matrix is not
rank deficiency, and can obtain the unknown parameters X
and the corresponding covariance matrix QX̂ X̂

X̂ = (AT P A)−1 AT P B (12)

QX̂ X̂ = (AT P A)−1 (13)

where P is the weight matrix of observations. The
covariance matrix of Model 4 should be estimated with error

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 �t1/2 �t2
1/6

4π

λR sin θ

B1⊥ − B0⊥
t1 − t0

1 (�t2 + �t1) /2 �t3
2 − �t3

1/ (6t2 − 6t1)
4π

λR sin θ

B2⊥ − B1⊥
t2 − t1

...
...

. . .
...

1 (�t N + �t N−1) /2 �t3
N − �t3

N−1/ (6tN − 6t N−1)
4π

λR sin θ

B N⊥ − B N−1
⊥

tN − tN−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9)

X = [v̄ā�ā�z]T . (10)
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propagation, because of the changing observations from the
original unwrapped phase to velocity vector. In addition,
the variance–covariance matrix of unknown parameters of
Model 3 whose design matrix (A) is rank deficiency can be
determined according to its generalized inverse of A.

It is clear that the design matrix A determined by the
thresholds of baselines used for selecting interferograms is
a main factor in QX̂ X̂ and can affect the accuracy of the
unknowns. The design matrix corresponding to small baseline
thresholds will result in a poor or instable estimation of
the unknown parameters [25]. The relationship between the
accuracy of the estimated DEM error and the thresholds and
variation of baselines will be thoroughly analyzed via a large
set of synthetic tests.

B. Connectivity of Interferogram Network

As described above, different baseline thresholds can lead
to different design matrices. Interferogram subsets can also be
possibly induced due to small thresholds or coarse temporal
density of SAR images. The subsets can make the design
matrix rank deficiency, and therefore parameter estimation
has to depend on extra constraints. Minimum norm constraint
behind SVD that has been widely used in multiple-master
MTInSAR methods cannot guarantee a reliable estimation
of parameters (e.g., the topographic error and deformation),
especially in the case that there is notable fluctuation among
parameters.

C. Deformation Assumptions

Linear and cubic deformation assumptions are widely used
in MTInSAR models [13], [15], [27]. However, the discrep-
ancy between the real deformation pattern of a study area and
the assumed model hinders us to get an accurate estimation
of DEM error. Moreover, the inaccurately estimated DEM
error will further induce contamination to the deformation time
series estimation and the elimination of atmospheric phase.

IV. SYNTHETIC TESTS AND RESULTS

Abundant tests have been conducted in order to identify
the relationship between the accuracy of MTInSAR derived
topographic residuals and the factors described in Section III.
We have simulated 33 interferograms where temporal and
perpendicular baselines of an Envisat/ASAR Track 175 over
Pearl River Delta, China, are used. The baseline distribution
is shown in Fig. 1(a). A total of 1500 pixels are sampled from
a real deformation field to guarantee the spatial correlation of
deformation. Meanwhile, three deformation models with dif-
ferent magnitudes, i.e., linear [Fig. 1(b)], periodic [Fig. 1(c)],
and complicated [Fig. 1(d)], DEM error, atmospheric effects,
and decorrelation noise are also simulated and used to generate
the interferograms. As DEM error is taken as a parameter
in MTInSAR techniques, essentially speaking, models used
for DEM error simulation will not affect the estimation.
However, to make the DEM error more realistic, we adopt
here the difference between DEM retrieved from TanDEM-
X [Fig. 2(a)] and SRTM DEM [Fig. 2(b)] as the “true”

Fig. 1. (a) Distribution of spatial–temporal baselines. (b) Simulated linear
deformation. (c) Simulated periodical deformation. (d) Simulated complex
deformation.

value of DEM error at the selected coherent points, as shown
in Fig. 2(c) and (d). To analyze the atmospheric effects,
atmospheric signal is simulated with the fractal dimension
that has a uniform distribution between 2.16 and 2.67 at a
wavelength about 0.5–2 km [28], [29]. The atmospheric arti-
facts in the simulated 34 SLCs are spatially correlated, while
with random magnitudes, whose maximum varies randomly
with a standard deviation of 0.5, 1.5, 2.5, and 3.5 rad for
analyzing the relationship between RMSE of DEM error and
atmospheric artifacts. As an example, one set of artifacts
having a standard deviation of 1.5 rad is shown in Fig. 3, which
is used as the atmospheric phases in scenarios for analyzing
the effects of other factors on the accuracy of estimated DEM
error. In addition, the decorrelation noise caused by geometric,
temporal, and volume is also taken into consideration based
on an assumed zero-Doppler centroid frequency, resulting in a
spatial- and temporal-related phase noise as follows [29], [30]:

γ k,m = γgeometric · γtemporal = g(Bk,m
⊥ , B⊥critical)

· g(T k,m , Tcritical)

g(x, c) =
⎧⎨
⎩1 − |x |

c
, if |x | < c

0, otherwise
(14)

where k and m are two SAR images, Bk,m
⊥ and T k,m are

the perpendicular and temporal baselines of interferograms,
and B⊥critical and Tcritical are the critical spatial and temporal
baselines of interferograms. The critical baseline is a function
of wavelength, incidence angle, and topographic slope derived
from DEM [29], [30], and the critical temporal baseline is set
to five years considering the stability of man-made targets,
such as buildings and streets, in this paper [28]. It is worth
noting that the orbit errors are assumed to be well removed
from the interferometric phases, which can be achieved using
the model proposed in [1], [7], and [31] in real cases. We can
then get a set of simulated wrapped and unwrapped interfero-
grams with different spatial and temporal baseline thresholds.
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Fig. 2. (c) and (d) DEM error map derived from the difference between (a) TanDEM-X and (b) SRTM.

To tackle the relationship between the accuracy of the
estimated DEM error and the factors depicted above, we inde-
pendently analyze the impact of each factor on the popular
MTInSAR models introduced in Section II. For example,
we will fix the baseline threshold and deformation pattern
when we analyze the influence of network connectivity on
DEM error estimation. The accuracies of the estimated DEM
error and time series deformation for four adopted models are
quantified by the root-mean-square error (RMSE) between the
estimated and the simulated “true” DEM

rmse(Z) =
√√√√Num∑

i=1

(Zest − Z true)
2 /Num (15)

rmse(d) =
√√√√N+1∑

i=1

(dest(ti ) − dtrue(ti ))2/(N + 1) (16)

where Z true and dtrue (ti ) are the “true” values of DEM error
and displacement, Zest and dest(ti ) are the estimated values of
two types of unknowns, and Num and N + 1 are the number
of simulated points and SLCs, respectively.

A. Relationship Between DEM Error
and Baseline Thresholds

To identify the relationship between the RMSE of the
estimated DEM error and baseline thresholds, we add
phase components related to linear deformation, DEM error,

atmospheric artifacts whose maximum variation of ampli-
tude is set randomly with a standard variation of 1.5 rad,
and baseline related noise to the simulated interferograms.
It should be noted that to avoid the affection of other factors,
in this simulation scenario, there are no deformation model
error and interferogram subset. First, we generate a large
amount of different sets of interferograms through changing
the thresholds of spatial baseline from 120 to 350 m with
an interval of 10 m and temporal baseline from 6× cycle
days to 675 days with an interval of 2× cycle days, which
serve as basic observations for the MTInSAR models. The
cycle equals the satellite repeating period, which is 35 days for
Envisat/ASAR. As the single-master-based PSI technique (i.e.,
Model 1) is not affected by baseline threshold, we ignore the
evaluation of this model here. We first estimate the DEM error
with Model 2, and Fig. 4(a) reflects the relationship between
RMSE of the estimated DEM error and baseline thresholds.
We can find that the RMSE of DEM error decreases with
the rise of baseline thresholds, especially the spatial baseline.
To determine the specific relationship, we calculate the mean
values of each column and row and plot them in a 2-D map
shown in Fig. 4(b). We can see that the RMSE of DEM error
decreases with the rise in the perpendicular baseline threshold,
while it stays steady with the increase in temporal baseline
threshold. This indicates that the RMSE of DEM error is more
sensitive to perpendicular baseline threshold and the regression
model is also plotted in Fig. 4(d). Obviously, the RMSE of
DEM error in SBAS InSAR (i.e., Model 2) decreases with
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Fig. 3. Simulated atmospheric signals whose maximum variation is set randomly with a standard deviation of 1.5 rad.

the increasing perpendicular baseline threshold and it keeps
steady when the baseline threshold is large enough. Moreover,
we analyze the distribution of perpendicular baseline depicted
by the standard deviation of baseline and plot it in Fig. 4(c),
which indicates that the RMSE of DEM error decreases with
the increase in perpendicular baseline diversity.

In addition, we also generate the results of Models 3 and 4.
Fig. 5(a) and (b) presents the relationship between RMSE of
DEM error and perpendicular baseline threshold. We can find
that the RMSE of DEM error estimated by these two models
[Fig. 5(a) and (b)] is almost the same ranging from 0.5 to 1.3
m and has a rather weak correlation with baseline threshold
used. In other words, Models 3 and 4 are not sensitive to how
the image pairs are selected. However, four obvious jumps
in Fig. 5(a) and (b) are observed despite the fact that the
RMSE of DEM error is approximate. For example, the first
jump appears when a SAR image (March 15, 2009) is deleted
due to the limitation of spatial–temporal baseline thresholds

(220 m and 220 days). The following three jumps are also
caused by the removal of the SAR acquisitions.

B. Relationship Between DEM Error Estimation
and Interferogram Quality

We further investigate the relationship between the RMSE of
the estimated DEM error and the quality of differential phase
(atmospheric delay) where other factors such as deformation
model, baseline thresholds (spatial and temporal baseline
threshold equal to 150 m and 400 days, respectively), and
interferogram connectivity have been fixed. In order to deter-
mine the atmospheric influence on DEM error, linear defor-
mation, baseline-related noise, and four sets of atmospheric
signals whose maximum amplitudes vary randomly with a
standard deviation of 0.5, 1.5, 2.5, and 3.5 rad are added to
the simulated interferograms. As shown in Table II, the RMSE
of DEM error increases with the increasing atmosphere levels
for all models. As expected, the RMSE of the DEM error
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Fig. 4. (a) Relationship between RMSE of the estimated DEM error and baseline thresholds in MTInSAR methods. (b) Sensitivity of DEM error to the baseline
thresholds. The horizontal axis represents the mean value of DEM error RMSE of (a) in each row (perpendicular baseline direction) or column (temporal baseline
direction). The blue asterisk and red circle lines represent the sensitivity to perpendicular baseline threshold and temporal baseline threshold, respectively.
(c) Relationship between RMSE of DEM error and distribution of perpendicular baseline depicted by the standard deviation of baseline. (d) Relationship
between RMSE of DEM error and perpendicular baseline threshold. The red solid lines represent the regression of each column of (a), and the black solid
line represents the regression of all pixels of (a).

Fig. 5. Relationship between RMSE of DEM error and baseline thresholds of Models (a) 3 and (b) 4.

estimated by Models 3 and 4 is lower due to better structures
of design matrix that are more sensitive to the DEM error.

C. Relationship Between DEM Error Estimation and
Interferogram Subsets

As described in Section III-B, accurate estimation of DEM
error by Models 3 and 4 cannot be guaranteed when subsets

exist. In the synthetic test, we select image pairs with a spatial
baseline threshold of 100 m and a temporal baseline threshold
of 400 days and generate a network of interferograms shown
in Fig. 6(a). Linear deformation, DEM error, atmospheric
signals, and baseline-related noise phase are added to these
selected pairs. The estimated topographic residuals and his-
tograms of the related estimation errors for Models 2–4 are
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TABLE II

STATISTICAL RESULTS OF RMSE OF DEM ERROR WITH DIFFERENT LEVELS OF ATMOSPHERE

Fig. 6. (a) Distribution of selected pairs when spatial baseline threshold equals 100 m and temporal baseline threshold equals 400 days. (b) Distribution of
the selected pairs with a manual deletion.

calculated and plotted in Figs. 7(a)–(c) and 8(a)–(c), respec-
tively. The calculated RMSEs of DEM estimation error are
1.51, 1.32, and 1.33 m for these three models, respectively.
Then, we delete a selected pair manually to get a network
with a subset [see Fig. 6(b)]. The results for the three selected
models are shown in Figs. 7(d)–(f) and 8(d)–(f), indicating
that Model 2 has lower sensitivity to subset than the other
two models with an RMSE of 1.57 m, which is similar to
the results derived from network without subset. However, the
accuracy of the estimated DEM error drops down notably for
the latter two models, especially for Model 4, with the RMSE
increasing from 1.33 to 4.61 m [see Fig. 7(c) and (f)]. It can be
concluded that the connectivity of the network is a significant
factor affecting DEM error accuracy in multimaster-based
MTInSAR models. Since Model 1 naturally takes a complete
network of interfergorams (i.e., no subsets) as observation, it
is not necessary to evaluate the effect of subsets on it.

Moreover, we analyze the influence of the incorrected
DEM error on the deformation time series estimation. It
is worth noting that we do not apply any spatial–temporal
filter for the final deformation estimation due to the fact that
parameter setting is largely based on operator’s experience
in real situation. Fig. 9(a)–(c) shows the results of
Models 2–4 based on the connected network. Fig. 9(d)–(f)

shows the results of these models based on the network with a
subset. The results indicate that deformation time series can be
affected if DEM error was not well corrected in the MTInSAR
models. Among these models, the last model (i.e., Model 4)
is most sensitive to the incorrected DEM error when estimat-
ing the deformation time series from interferograms having
subsets, with a notable decline in mean and STD of RMSE
from 1.47/0.38 to 2.04/1.10 mm.

D. Relationship Between DEM Error and
Deformation Models

To analyze the relationship between DEM error and
deformation models, three deformation models (i.e., linear,
periodic, and complicated) are simulated. DEM error,
atmospheric signals, and baseline-related noise phase are
added. We select a set of connected interferogams with fixed
thresholds of spatial and temporal baselines for Models 2–4
and also prepare the single-master observations for Model 1.
We then conduct the estimation for these models where only
the DEM error and deformation mean rate (or rate vector for
Model 4) are taken as parameters no matter linear, periodic,
or complicated the simulated “real” deformation is. Fig. 10
shows the results of these models. It is clear that the RMSE
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Fig. 7. Estimated DEM errors of Models 2–4 without and with interferogram subset.

Fig. 8. Histograms of Models 2–4 without and with interferogram subset.

of DEM error estimated by the four models is affected by
the discrepancy between the simulated deformation pattern
and real deformation signal. For example, the RMSE of

DEM error for linear deformation is better than the other
two deformation models due to the consistency between
the deformation parameter and the real deformation
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Fig. 9. Histograms of errors of deformation time series estimated by Models 2–4 without and with interferogram subset.

[see Fig. 10(a)–(d)]. The results of Model 2 for the periodic
and complicated deformation models are seriously affected
by the model bias [see Fig. 10(f) and (j)]. The results of
Models 3 and 4 with periodic deformation pattern are similar
to the results with linear deformation since signals (i.e.,
velocities or phases) between adjacent SAR images are taken
as parameters in these two models [see Fig. 10(g) and (h)].
However, the RMSE of DEM error estimated by these models
with complicated deformation pattern is not satisfactory
because the deformation model and real deformation pattern
have notable discrepancy [see Fig. 10(j)–(l)]. It is worth
noting that accuracy of DEM error estimated by Model 1 (the
reference image is January 4, 2009) is also sensitive to the
discrepancy between the model used and the real deformation
[see Fig. 10(m)]. For example, the RMSE of the estimated
DEM error increases from 0.99 m in the linear deformation
scenario to 6.93 m in the period scenario, indicating that
the proper deformation model is important for DEM error
estimation.

For Models 2–4, we also evaluate their performance
on DEM error estimation from interferogram stacks with
changing baseline thresholds in different deformation sce-
narios. A set of spatial baseline thresholds changing from
120 to 350 m with an interval of 10 m are used to select
image pairs, while the temporal baseline threshold is fixed
to a value of 395 days due to its insensitivity to DEM error
accuracy described in Section IV-A. The results in Fig. 11(a)

show that the RMSE of DEM error of Model 2 is sensi-
tive to the perpendicular baseline thresholds, especially when
significant difference existed between deformation model and
real deformation, such as period or complicated deformation.
Meanwhile, a jump is observed for Models 3 and 4 in
Fig. 11(b) and (c) because one SLC image was discarded when
using smaller baseline thresholds as depicted in Section IV-B.

As a summary of the synthetic tests, we have studied the
estimation of the topographic residuals in MTInSAR, which
can affect the DEM reconstruction and the accuracy of the
estimated deformation time series based on four widely used
models. The factors we have tested here, i.e., the baseline
thresholds, the connectivity of interferometric network, the
quality of interferograms, and deformation pattern, have been
summarized in Table III, which can serve as a reference
for MTInSAR model selection. In general, the perpendic-
ular baseline thresholds have an obvious influence on the
RMSE of DEM error of Model 2, whereas a slight impact
on Models 3 and 4. To the factor of network connectivity,
Model 4 is more sensitive compared with Model 3, whereas
Model 2 can keep steady in the case having interferogram
subset. The RMSE of DEM error of Models 1–4 increases
with the increase in atmospheric signals, i.e., the decrease
in interferograms’ quality. However, Models 3 and 4 in
our simulation scenarios are less sensitive to the increasing
atmospheric signals compared with Model 2 as shown in
Table II. The deformation assumption depicted in Section III-C
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Fig. 10. Estimated DEM errors and histograms of all the four models with three selected deformation patterns. The first three rows represent the estimated
DEM error for four models in linear, period, and complicated deformation pattern. The fourth row represents the histograms of estimated DEM error for four
models. The red, green, and blue lines represent the statistical results for linear, period, and complicated, respectively.

Fig. 11. RMSE of estimated DEM error for three simulated deformation inputs and different baseline thresholds. (a) Model 2. (b) Model 3. (c) Model 4.

has impacts on DEM error estimation for Models 1–4 with
different degrees. For example, the influence on Model 2 is
most notable, especially when a significant difference existed
between assumed deformation model and real deformation,

while the stability of other three models is better compared
with Model 2.

Although these tests are derived from simulated interfer-
ograms based on real SAR data sets and assumptions, for
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TABLE III

NOTABILITY OF EFFECTS OF THE AFOREMENTIONED
FACTORS ON DEM ERROR ESTIMATION

example, no phase unwrapping error, zero-Doppler frequency,
and no orbit residuals, the conclusions we derived here can
largely hold in real cases as the assumptions used can be
met by proper processing approaches. It should be underlined
that DEM error in interferograms is not only caused by the
difference between external DEM and true terrain, which is
taken as a parameter in this paper, but the mismatch between
the pixel phase centers. Hence, the DEM error estimation
especially in high-resolution MTInSAR should take this into
consideration.

V. CONCLUSION

By employing vast synthetic tests, this paper has analyzed
the accuracy of topographic residuals estimated by MTInSAR
techniques, i.e., PSInSAR (Model 1), traditional SBAS
(Model 2), Samsnovo’s method (Model 3), and Fahatti’s
method (Model 4). The results indicate that four factors
can affect the accuracy of DEM error, and the inaccurately
estimated DEM error will further degrade the estimation of
deformation time series. The first factor includes the thresholds
and the distribution of baselines of image pairs. The RMSE
of DEM error is more sensitive to spatial baseline thresholds
than temporal baseline threshold, and it is decreased with
the increase in perpendicular baseline threshold first and then
keeps stable when threshold reaches a certain value. In addi-
tion, it also has a strong relationship with the diversity of
perpendicular baselines of the selected pairs. The second factor
is the quality of differential interferograms. Higher quality
(e.g., less atmosphere artifact) can lead to lower RMSE of
DEM error. The third one is the connectivity of interferogram
network. According to the test, Models 3 and 4 are sensitive to
subsets, while Model 2 is stable with the existence of subsets.
The last one is the deformation model error. It can result in
an inaccurate estimation of DEM error when a significant bias
exists in deformation model used and real deformation signal.
In the test, the RMSE of the estimated DEM error is notably
enlarged when there is a complicated deformation for all the
four models.

The work here is expected to raise our awareness of the
fact that the quality of topographic residuals retrieved by cur-
rent MTInSAR techniques can be affected by several factors
commonly existing in our real applications. It also provides
a guidance on the selection of proper MTInSAR methods.
More importantly, by analyzing the factors that can affect the
accuracy of retrieved DEM error, it is possible for us to find
out an optimal processing framework and modeling strategy
to overcome at least partially the limitations associated with

current MTInSAR techniques. This is one focus of our work
in future.
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