
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 1

A Closed-Form Robust Cluster-Analysis-Based
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Abstract— Phase unwrapping (PU) and phase filtering are
the key procedures for the interferometric synthetic aperture
radar (InSAR) technology. As one of the most popular multi-
baseline PU (MBPU) algorithms, the cluster-analysis (CA)-based
MBPU algorithm still has some problems that need to be
improved. To begin with, the cluster ambiguity vector is obtained
by searching the nearest integer point to the cluster centerline
with known slope and intercept in the search space. It will be
time-consuming and inconvenient when the number of baselines
or the search space is too large. In addition, they do not have
the capacity of phase filtering. Moreover, they do not consider
the impact of different baseline combinations on the perfor-
mance of the CA-based MBPU algorithm. For these reasons,
a novel CA-based MBPU and filtering (MBPUF) algorithm is
proposed in this article. The main contributions of this article
are that it gives the closed-form solving formulas of the cluster
ambiguity vector to improve the efficiency of the CA-based
MBPU algorithm, proposes a novel MB InSAR phase-filtering
strategy that makes the CA-based MBPU algorithm capa-
ble of solving the phase-discontinuity problem and improving
the height-reconstruction accuracy simultaneously, and utilizes
the optimal baseline combination to improve the robustness
of the CA-based MBPU algorithm. Theoretical analysis and
experiments on both simulated and real MB InSAR data sets
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show the effectiveness and robustness of the proposed closed-form
robust CA-based MBPUF algorithm.

Index Terms— Cluster analysis (CA), interferometric synthetic
aperture radar (InSAR), multibaseline (MB), optimal baseline,
phase filtering, phase unwrapping (PU).

I. INTRODUCTION

INTERFEROMETRIC synthetic aperture radar (InSAR) is
the key technique for terrain height (also known as the

digital elevation model, DEM) extraction and deformation
monitoring with high spatial resolution and high measurement
accuracy [1]–[3]. It takes the advantage of the fact that the
ground elevation or the deformation amplitude is related to the
absolute interferometric phase between the signals received
by the two InSAR antennas. However, only the principal
values of the absolute interferometric phase, modulo 2π , can
be measured from the complex-valued resolution element.
Therefore, a crucial processing procedure, phase unwrapping
(PU), must be carried out to remove the modulo 2π ambiguity
of the wrapped interferometric phase [4], [5].

As is known to all, the traditional single-baseline
PU (SBPU) is an ill-posed inverse problem from the math-
ematical viewpoint [6], [7]. Because there are two unknowns
(the integer ambiguity and the unwrapped phase), in one equa-
tion that will lead to many solutions. To ensure the uniqueness
of the solution, SBPU assumes that the actual phase jumps
between adjacent pixels are less than π. This assumption
is called phase-continuity assumption or Itoh condition [8].
Unfortunately, not all situations satisfy this assumption in prac-
tice because of complex terrain or severe deformation. Thus,
a new kind of technique, multifrequency, and/or multibaseline
PU (MFPU and/or MBPU), has been proposed to eliminate
the phase-continuity assumption [9]. Since the principles of
MBPU and MFPU are essentially the same, and MB InSAR
is more common in the practical applications, only MBPU is
discussed in this article for the sake of simplicity. Essentially,
the elimination of the phase-continuity assumption means the
extension of the ambiguity phase interval or the ambiguity
height interval because of the baseline diversity.

Over the past two decades, MBPU has been extensively
investigated for height estimation [10], [11] and deforma-
tion estimation [12]–[16]. According to the difference of
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the wrapped phase processing, the MBPU methods can
be roughly divided into two categories: statistical estima-
tion methods [17]–[30] and nonstatistical estimation meth-
ods [9], [31]–[41]. For the statistical estimation methods,
the height [17]–[20], [22]–[30] or height difference [21] of the
terrain is regarded as a parameter to be estimated in a statistical
distribution framework, which is modeled by the probabil-
ity density function of the interferometric phase [42], [43].
And the parameter is estimated by the maximum likeli-
hood (ML) [17]–[22], [25], [26] or the maximum a posteriori
(MAP) [23], [24], [27] criteria. For the nonstatistical estima-
tion method, the combined information of multiple InSAR
interferograms with different baseline lengths is directly used
to estimate the absolute phase without using the probability
density function of the interferometric phase.

The development of the two categories of MBPU methods
mentioned above can be divided into three stages. In the
first stage, the Chinese remainder theorem (CRT) method,
the projection method, and the linear combination method
are first proposed to facilitate the independent PU of each
pixel [9]. At the same time, two classes of MBPU methods
are introduced in [17]: the first is based on the robust weighted
or unweighted least-squares PU method proposed for SBPU,
whereas the second attacks the problem in an ML formulation.
In [18]–[21], other similar methods based on ML estimation
are presented. In [31], a coarse-to-fine iterative method is
proposed to unwrap the wrapped interferogram with a longer
baseline from the unwrapped interferogram with a shorter
baseline. In [32], the Kalman filtering (KF) technique is first
applied to MBPU. However, all the previously mentioned
methods have a serious issue, i.e., they are very sensitive to
noise, and small phase noise may cause a large PU error.
So, in the second stage, some extra measures to improve the
noise robustness of the MBPU methods have been made. For
the statistical estimation methods, local plane hypothesis is
used to approximate the unknown surface in the ML estima-
tion [22], and the a priori distribution of the unknown terrain
height is modeled to help the MAP estimation [23], [24].
In [28], the DEM-reconstruction accuracy of the ML and
MAP estimation methods is analyzed. In [29], a good review
on the ML and MAP estimation methods for the DEM
reconstruction is showed in detail. More than that, the MAP
estimation method has been applied to the multichannel space-
borne/stationary SAR interferometry [30]. For the nonstatisti-
cal estimation method, an improved closed-form CRT-based
technique [33] is designed to improve the performance of the
traditional CRT-based MBPU method proposed in [9]. In addi-
tion, another kind of MBPU method, the robust cluster analysis
(CA) based method and its extensions and improvements, has
been proposed in [34]–[36]. In the CA-based MBPU method,
all pixels are divided into different clusters according to the
combined information of multiple interferograms, and then
each cluster center’s information is used for MBPU. In the
third stage, filtering techniques and SBPU techniques are
widely applied to MBPU for further reducing the effects of
phase noise. The application of the filtering technique makes
MBPU capable of PU and phase filtering at the same time.
In [25] and [26], ML criteria and extended Kalman filter (EKF)

are combined to build the multichannel EKF PU framework,
achieving interesting performance improvements. In [27], the
nonlocal filtering technique is introduced into the MAP-based
MBPU method. For the nonstatistical estimation method,
traditional SBPU techniques have been extended to MBPU.
Inspired by the thought of [21], Yu and Lan [37] proposed
a two-stage programming approach (TSPA) to transplant the
framework of SBPU and the two key concepts used in SBPU
(residue and branch cut) into MBPU. From then on, the
research related to TSPA has developed rapidly. In [38], the
local plane model is embedded into TSPA for improving
the robustness of the MBPU algorithm. In [39], unscented
Kalman filter is integrated into the TSPA framework. In [40],
the SBPU-max-flow (PUMA) algorithm has been extended to
MBPU to improve the robustness of the MBPU algorithm.
In [41], a technique for applying the TSPA-based MBPU
method to large-scale (LS) MB InSAR data sets has been
put forward. As TSPA attracts more and more attention,
researchers start to jointly call all the TSPA-related techniques
as TSPAInSAR. It is worth noticing that the three KF-based
MBPU methods proposed in [44]–[46] do not consider the
phase-discontinuity problem, and thus their application scope
is limited.

In this article, we propose a novel closed-form robust
CA-based MBPU and filtering (MBPUF) algorithm and ana-
lyze the condition of optimal baseline combination. There
are three differences between the proposed method and the
previous CA-based MBPU methods. First, in the previous
CA-based MBPU methods, the cluster ambiguity vector (the
term will be defined in Section II) is obtained by searching
the nearest integer point to the cluster centerline with known
slope and intercept in the search space. It will be time-
consuming and inconvenient when the number of baselines
or the search space is too large. In this article, we provide the
closed-form solution of the cluster ambiguity vector, which
is helpful to improve the efficiency of the CA-based MBPU
algorithm. Second, we propose a novel cluster phase-filtering
strategy, which allows the CA-based MBPU method to simul-
taneously solve the phase-discontinuity problem and improve
the height-reconstruction accuracy like the other KF-based
MBPU methods. Third, we analyze the impact of different
baseline combinations on the MBPU algorithm and give the
conditions of the optimal baseline combination required by
MBPU. It is helpful to improve the robustness of the MBPU
algorithm and can provide guidance for the baseline combi-
nation design of actual MB InSAR system. To reconstruct the
terrain height by the unwrapped phase, the clustering algorithm
proposed in [34]–[36] is first used to distinguish different
clusters; thereafter, the closed-form solution formula is used
to calculate the cluster ambiguity vector of each cluster; and
then, the proposed cluster phase-filtering method is used to
filter the original wrapped phase; after that, the unwrapped
phase is obtained according to the cluster ambiguity vector
and the filtered wrapped phase; at last, the terrain height is
reconstructed by the unwrapped phase and other MB InSAR
system parameters.

The rest of this article is organized as follows. In Section II,
the principle of the CA-based MBPU method is reviewed and
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the disadvantage of this method is analyzed. In Section III,
the novel closed-form robust CA-based MBPUF algorithm is
described in detail. Three experiments with both simulated
and real MB InSAR data sets are presented in Section IV to
verify the effectiveness of the proposed method. Finally, some
conclusions are drawn in Section V.

II. REVIEW OF CA-BASED MBPU METHOD

AND PROBLEM ANALYSIS

For a pixel, considering an MB InSAR system with a work-
ing wavelength λ, a view angle (or look angle) θ , and a normal
baseline (or a perpendicular baseline) Bi (i = 1, 2, . . . , N),
the terrain height of the sth pixel can be expressed as
follows [37]:

h(s) = λ · r(s) · sin θ

4π · Bi
· ψi (s) (1)

where r(s) is the slant range of the sth pixel between
the master antenna and the target point, and ψi (s) is the
flattened absolute interferometric phase of the sth pixel in
the i th interferogram. The term “flattened” means that the
flat earth phase [2] has been removed. So, the ambiguity
height (the height resulting in a phase change of one fringe,
i.e., 2π) [2], [3] of the i th interferogram is obtained by

Hi = λ · r(s) · sin θ

2Bi
. (2)

However, only the so-named wrapped interferometric phase
(from 0 to 2π or −π to π) can be directly measured by the
InSAR system. It can be expressed as follows:

ϕi (s) = ψi (s)− ki(s) · 2π (3)

where ki (s) is the unknown integer ambiguity of the sth
pixel in the i th interferogram. We can see from (3) that
ki (s) must be recovered if we want to obtain the absolute
interferometric phase ψi (s). And then ψi (s) can be converted
to the terrain height h(s) by (1) directly. Obviously, ψi (s) and
ki (s) cannot be solved simultaneously with (3) because there
are two unknowns but only one equation.

There are two ways to solve (3). The first method is
to use the traditional single-baseline InSAR PU technology,
SBPU, mentioned in Section I, which is an ill-posed inverse
problem because of the requirement of the phase-continuity
assumption (i.e., the differences of the absolute interferometric
phase between adjacent pixels are less than π). The second
is to use the MB PU technology, MBPU, which will be
used in this article. For simplicity, let us assume that there
are only two baselines in the MB InSAR system. Then we
can obtain the relationship of the two interferograms by
combining (1)–(3), i.e.,

ϕ1(s)+k1(s)·2π
B1

= ϕ2(s)+k2(s)·2π
B2

= 4π

λ · r(s)·sin θ
·h(s).

(4)

It should be noted that the equal sign is only valid when
there is no deformation during the measurement, i.e., only the
elevation exists. If we take k1(s) as an independent variable

and k2(s) as a dependent variable, (4) can be transformed into
a linear equation as follows:

k2(s) = B2

B1
· k1(s)+ B2 · ϕ1(s)− B1 · ϕ2(s)

2π · B1
. (5)

According to (5) and related definitions,we known that the
slope of the straight line is a constant, B2/B1, and the intercept
of the straight line is determined by B1, B2, ϕ1(s) and ϕ2(s)
simultaneously [please refer to the second term on the right
side of (5)]. If we define the term ambiguity vector [k1(s),
k2(s)] to represent the integer ambiguity of the sth pixel in the
two interferograms, the pixels with the same ambiguity vector
can be considered to belong to the same cluster. We refer
to the ambiguity vector corresponding to the pixels belonging
to the same cluster as the cluster ambiguity vector. In addition,
the straight lines corresponding to these pixels have the same
slope, B2/B1, and pass though the same integer point (K1, K2)
on the k1–k2 plane (as shown in Fig. 1). Therefore, we could
get a conclusion that all straight lines with the same ambiguity
vector have the same intercept, i.e., they are overlapping.
In other words, all pixels whose corresponding straight lines
have the same intercept can be grouped into the same cluster.
It is the essence of the CA-based MBPU algorithm.

However, the measured intercept often deviates from its cor-
responding true intercept owing to the influence of phase noise.
To reduce this influence, two different clustering strategies are
proposed. Yu et al. [34] use the intercept information to dis-
tinguish different clusters and to determine the corresponding
cluster ambiguity vector by finding the peak of the intercept
statistical histogram curve. Liu et al. [35] combine the inter-
cept and spatial location information together to distinguish
different clusters, which is named density-based clustering
algorithm. Detailed descriptions of these two strategies can
be found in [34] and [35].

Although the performance of these two methods is better
than the traditional pixel to pixel’s CRT-based MBPU method,
many further improvements can still be made. First, the cluster
ambiguity vector is obtained by searching the nearest integer
point to the cluster centerline with the known slope and
intercept in the search space. It will be time-consuming and
inconvenient when the number of baselines or search space
is too large. Second, they do not have the capacity of phase
filtering like the KF-based MBPU method. Third, they do
not consider the impact of different baseline combinations on
the performance of the CA-based MBPU algorithm. For these
reasons, this article improves the CA-based MBPU algorithm
from three different aspects. A detailed description of these
improvements will be presented in the following section.

III. CLOSED-FORM ROBUST CA-BASED

MBPUF ALGORITHM

According to the analysis of Section II, a closed-form robust
CA-based MBPUF algorithm is proposed in this section. For
the sake of simplicity, we describe the design and analysis of
the algorithm in the case of two baselines at first (we refer
to it as dual-baseline PU, DBPU). Then we will discuss its
generalization to the MB case.
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Fig. 1. Relationship between (a) wrapped phases ϕ1 and ϕ2 and (b) ambiguity
numbers k1 and k2.

A. Closed-Form Solution of Cluster Ambiguity Vector

We all know that the ambiguity height can be obtained
by (2) based on the baseline information and other InSAR
system parameters. In general, the baseline length is obtained
by measurement or estimation, which should be a rational
number, and the corresponding ambiguity height (H1 or H2) is,
of course, a rational number, so the baseline ratio must also be
a rational number. Therefore, H1 and H2 can be decomposed
into a form of multiplying a common factor and an integer as
shown below by the method of finding the greatest common
divisor: {

H1 = M · �1

H2 = M · �2
(6)

where M is the common factor, �1 and �2 are the positive
integers and they are coprime. The decomposition process
is as follows: when H1 and H2 are integers, then M is
equal to the greatest common divisor of H1 and H2, i.e., gcd
(H1, H2); when both H1 and H2 are decimal, then the same
number of decimal places is reserved (assuming n decimal
places are reserved), and M = gcd (H1∗ 10n , H2∗ 10n)/10n.

For example, if H1 = 13.8 and H2 = 32.2, then M = gcd
(13.8 × 10, 32.2 × 10)/10 = 4.6, �1 = 13.8/4.6 = 3, and
�2 = 32.2/4.6 = 7.

Then, according to (1)–(3) and (6), we can obtain

h(s)

M
= k1(s)·�1+ ϕ1(s)

2π
·�1 = k2(s)·�2+ ϕ2(s)

2π
·�2. (7)

Suppose that ϕ1,2(s) ∈ [0, 2π), and define⎧⎪⎪⎨
⎪⎪⎩

qi (s) =
⌊
ϕi (s)

2π
· �i

⌋

ri (s) =
{
ϕi (s)

2π
· �i

}
,

i = 1, 2 (8)

where �·� and {·} represent the integer and decimal parts of
a real number, respectively. Then, we can obtain the linear
congruence equations from (7) as follows:⎧⎪⎪⎨

⎪⎪⎩

⌊
h(s)

M

⌋
= k1(s)�1 + q1(s)⌊

h(s)

M

⌋
= k2(s)�2 + q2(s)

(9)

where �h(s)/M� is the integer solution of the congruence
equations to be solved, ki (s) is the unknown ambiguity num-
ber of the ambiguity vector [k1(s), k2(s)], �i is the known
modulus in (6), qi (s) is the known remainder calculated
by (8), and the dependence of them on s is understood.
Corresponding to the ambiguity vector, the remainder vector is
defined as [q1(s), q2(s)]. Obviously, �h(s)/M� can be solved
by CRT [33], [48]. If we define

� = �1 · �2 (10)

γi = �/�i , i = 1, 2 (11)

then, according to the classical CRT formula, �h(s)/M� can
be uniquely solved out in the interval 0, �) [48], i.e.,

⌊
h(s)

M

⌋
=

2∑
i=1

γ̄iγi qi (s)(mod�) (12)

where γ̄i is the modular multiplicative inverse of γi modulo �i .
γ̄i is actually the smallest integer solution of x in the indefinite
equation xγi + y�i = gcd(γi , �i ) = 1. It can be calculated by
the extended Euclidean algorithm, and the relevant codes can
be obtained through the Web. The relationship between them
is as follows:

γ̄iγi ≡ 1(mod�i ), i = 1, 2. (13)

Since �h(s)/M� has been solved now, the closed-form
solution of the ambiguity vector can be obtained by

ki (s) =
(⌊

h(s)

M

⌋
− qi (s)

)
/�i , i = 1, 2. (14)

If we use (8) directly to calculate qi (s) according to the
noisy wrapped interferometric phase ϕ̂i (s), it will belong to
the traditional pixel to pixel’s CRT-based MBPU method,
which has been proven to be not robust to noise [9]. In the
CA-based MBPU method, we will calculate qi (s) according
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to the intercept of the cluster’s centerline. Then we can see
from (2) and (6) that

B2

B1
= H1

H2
= �1

�2
. (15)

And the intercept of the straight line corresponding to the
pixel s can be expressed as follows:

intercept12(s) = 1

2π
·
(
�1

�2
· ϕ1(s)− ϕ2(s)

)

= k2(s)− �1

�2
· k1(s). (16)

If we take ϕ1(s) as the independent variable and ϕ2(s) as
the dependent variable, then the following linear equation can
be obtained from (16):

ϕ2(s) = �1

�2
· ϕ1(s)+ 2π ·

(
�1

�2
· k1(s)− k2(s)

)

= �1

�2
· ϕ1(s)− 2π · intercept12(s). (17)

Obviously, different intercept12(s) corresponds to a different
straight line on the ϕ1 −ϕ2 plane too, and each straight line is
“folded” into the square area of ϕ1,2(s) ∈ [0, 2π) (as shown
in Fig. 1). Furthermore, because �1 and �2 are coprime, the
�1 +�2 − 1 line segments can be obtained in total. Therefore,
we can know that the value of each intercept12(s) will be
limited to (−1, �1/�2). What is more, it can be seen from
the second expression of (16) that, since ki (s) and �i are
the integers, the value of each intercept12(s) can only be an
element of the following set:

S =
{

−�21

�2
,−�22

�2
, . . . , 0, . . . ,

�12

�2
,
�11

�2

}
. (18)

However, the intercept may deviate from its true value
owing to the existence of phase noise, so the corresponding
ambiguity vector cannot be directly calculated by the intercept
of each pixel. Instead, we choose the intercept in S that is
nearest to the intercept of each cluster’s centerline as the true
intercept of the cluster, which is named the cluster intercept
in this article. Consequently, the value of the cluster intercept
can only be an element of the set S for the InSAR system
with two baselines.

From (5) and (17), the relationship between the wrapped
phases ϕ1 and ϕ2, and ambiguity numbers k1 and k2 can be
shown in Fig. 1 (suppose B2 > B1). As can be seen from
Fig. 1(a), the points on the same line segment correspond
to the same ambiguity vector, i.e., the same cluster. And the
corresponding relationship between the ambiguity vector and
the remainder vector is one-to-many or one-to-one. Therefore,
any point on the line segment can be selected to calculate its
corresponding remainder vector, and then the corresponding
cluster ambiguity vector can be obtained based on the remain-
der vector and other known information. To obtain the closed-
form coordinate formula of the point, we select the intersection
point of the line segment with the following straight line that
goes through points (0, 2π) and (2π , 0) as the cluster central
point to calculate the remainder vector, which is named the
cluster central point remainder:

ϕ2 = 2π − ϕ1. (19)

Then the following coordinate formulas of the cluster central
point can be obtained by solving (17) and (19) simultaneously:⎧⎪⎪⎨
⎪⎪⎩
ϕ1(l) = 2π · �2 · (1 + intercept12(l))

�1 + �2

ϕ2(l) = 2π · (�1 − �2 · intercept12(l))

�1 + �2
,

l = 1, 2, . . . , �1 + �2 − 1 (20)

where intercept12(l) is the cluster intercept of the lth cluster
and [ϕ1(l), ϕ2(l)] is named the cluster central point phase
vector in this article. It must be reminded that the pixel index s
has been replaced with the cluster index l in (20), because at
this time, we assume that there are many pixels in the same
cluster, and the ambiguity vectors of the pixels belonging to the
same cluster are all the same, i.e., the cluster ambiguity vector,
which only needs to be solved once. If ϕi (l) is substituted
to (8) for calculating the cluster central point remainder qi (l),
then the closed-form solution of the cluster ambiguity vector
of the lth cluster can be obtained by (14)

qi (l) =
⌊
ϕi (l)

2π
· �i

⌋
(21)

⌊
h(l)

M

⌋
=

2∑
i=1

γ̄iγi qi (l)(mod�) (22)

ki (l) =
(⌊

h(l)

M

⌋
− qi (l)

)
/�i , i = 1, 2. (23)

B. Cluster Phase Filtering

In fact, MBPU technique also has the capacity of phase fil-
tering. It can be partially realized by projecting the noisy phase
onto the straight-line segment that belong to its corresponding
cluster. As mentioned in the previous section, we know from
Fig. 1(a) that the points on the same line segment correspond
to the same cluster. However, owing to the influence of phase
noise, the measured wrapped interferometric phase vector
points [ϕ̂1(s), ϕ̂2(s)] corresponding to the same cluster may
not fall onto the cluster’s line segment, but distribute into the
whole 2π×2π square region in the ϕ1−ϕ2 coordinate system.
Therefore, we can project the noisy phase vector point [ϕ̂1(s),
ϕ̂2(s)] onto the cluster’s line segment to achieve the result of
phase filtering. This kind of phase-filtering method is named
cluster phase filtering in this article. Obviously, the most
intuitive way of the projection is perpendicular projection,
which takes the intersection obtained by projecting the noisy
phase vector point [ϕ̂1(s), ϕ̂2(s)] perpendicularly onto the
cluster’s line segment as the filtered phase vector point [ϕ̄1(s),
ϕ̄2(s)] [please refer to Fig. 2(a)]. They can be expressed as
follows:⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ϕ̄1(s) = �1 · �2

�2
1 + �2

2

(
ϕ̂2(s)+ �2

�1
ϕ̂1(s)+ 2π · intercept12(l)

)

ϕ̄2(s)= �2
1

�2
1 +�2

2

(
ϕ̂2(s)+�2

�1
ϕ̂1(s)

)
− 2π ·�2

2 · intercept12(l)

�2
1 +�2

2
.

(24)

Of course, other projection methods can also be used. In fact,
we can take the intersection of the straight line passing through
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[ϕ̂1(s), ϕ̂2(s)] with the arbitrary slope and the cluster line
segment as the filtered phase vector point [ϕ̄1(s), ϕ̄2(s)].
However, different slopes will lead to different phase-filtering
results. For example, if ϕ̂2(s) is far more reliable than ϕ̂1(s),
then we can choose the horizontal projection as shown in
Fig. 2(b) to obtain the best phase-filtering result. On the
contrary, if ϕ̂1(s) is far more reliable than ϕ̂2(s), we can
choose the vertical projection as shown in Fig. 2(c) to obtain
the best phase-filtering result. Therefore, we can determine the
slope of the straight line according to the coherence of the two
interferograms. Suppose that the coherence coefficients of the
two interferograms are γ1 and γ2, respectively. Then the slope
of the straight line can be set to be −|γ1|/|γ2|, where | · |
represents the absolute value. Thus, the equations of the two
straight lines can be expressed as follows:⎧⎪⎪⎨

⎪⎪⎩
ϕ2 = −|γ1|

|γ2|ϕ1 + ϕ̂2(s)+ |γ1|
|γ2| ϕ̂1(s)

ϕ2 = �1

�2
ϕ1 − 2π · intercept12(l).

(25)

Solving the equations, the filtered phase vector point [ϕ̄1(s),
ϕ̄2(s)] can be obtained as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ̄1(s) = �2|γ2|
�1|γ2| + �2|γ1|

×
[
ϕ̂2(s)+ |γ1|

|γ2| ϕ̂1(s)+ 2π · intercept12(l)

]

ϕ̄2(s) = �1|γ2|
�1|γ2| + �2|γ1|

×
[
ϕ̂2(s)+ |γ1|

|γ2| ϕ̂1(s)−�2|γ1|
�1|γ2| · 2π · intercept12(l)

]
.

(26)

At this point, we can see that the projections, as shown
in Fig. 2, are the cases where |γ1|/|γ2| takes three different
special values. When |γ1|/|γ2| = �2/�1, the perpendicular
projection shown in Fig. 2(a) is used; when |γ1|/|γ2| = 0, the
horizontal projection shown in Fig. 2(b) is used; and when
|γ1|/|γ2| = ∞, the vertical projection shown in Fig. 2(c) is
used.

Another issue that needs special attention is that if the value
of ϕ̄i (s) is outside the defined range [0, 2π) after projection,
it should be wrapped into this range.

C. Optimal Baseline Combination

The robustness of the CA-based MBPU algorithm can also
be improved by choosing the optimal baseline combination.
A nonlinear mixed-integer programming-based baseline design
criterion (referred to as the NIP criterion) has been proposed
in [47] to maximize the measurement bias tolerance of the
DBPU methods. According to the NIP criterion, the optimality
condition for the CA-based DBPU method is [47]

B2

B1
≥ W2 + 1 (27)

where W2 is the number of ambiguities in an area with
continuous ambiguity change of the longer baseline B2’s
interferogram. It is actually the size of the search window
for searching the solution of k2. And Bi(i = 1, 2) should
satisfy the DB CRT condition [47] on each pixel. However, this

Fig. 2. Schematic illustration of cluster phase filtering. (a) Perpendicular
projection when |γ1|/|γ2 | = �2/�1. (b) Horizontal projection when
|γ1|/|γ2 | = 0. (c) Vertical projection when |γ1|/|γ2| = ∞.

condition only gives the lower limit of the optimal baseline
combination B2/B1 but does not provide the upper limit.
Obviously, the ratio of B2/B1 cannot be equal to infinity, and
there must be an upper limit. Therefore, it is necessary to
analyze its upper limit to narrow the selection range of the
optimal baseline combination.

According to the closed-form robust CRT [33], [48] and the
analysis in Section III-A, we know that h(s) can be uniquely
reconstructed in the interval from 0 to M�, which is named the
total ambiguity height Htotal in this article. It can be expressed
as follows:

Htotal = M� = M�1�2

= M�1 · M�2

M

= 1

M
·
(
λ · r(s) · sin θ

2

)2

· 1

B1 · B2
. (28)
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Obviously, to guarantee the uniqueness of the reconstructed
height, the maximum terrain height hmax of the target terrain
cannot exceed the total ambiguity height, so we have

1

M
·
(
λ · r(s) · sin θ

2

)2

· 1

B1 · B2
> hmax (29)

i.e.,

B1 · B2 <
1

M
·
(
λ · r(s) · sin θ

2

)2

· 1

hmax
. (30)

What is more, from the analysis in [36], the increase of the
ambiguity height of each interferogram can avoid some real
clusters being incorrectly merged into adjacent clusters and
improve the robustness of the CA-based MBPU algorithm.
Therefore, it does not mean that the higher baseline ratio
B2/B1 renders a better result. On the contrary, under the
preconditions that (27) and (30) are satisfied, the length of
B2 should be as close as possible to B1, which is the optimal
condition that meets the optimal baseline combination.

D. Description of the Closed-Form Robust CA-Based
DBPU and Filtering Algorithm

Under the conditions of optimal baseline combination, the
closed-form robust CA-based DBPU and filtering algorithm
can be depicted by the following 10 steps.

Step 1: Use the clustering method proposed in [34] or [35] to
distinguish different clusters by considering the intercept, row,
and line information of each pixel together. Then the number
of clusters L and the intercept of each cluster’s centerline are
obtained.

Step 2: Find the cluster intercept intercept12(l) of each
cluster for l = 1, 2, . . . , L.

Step 3: Calculate the cluster central point phase vector
[ϕ1(l), ϕ2(l)] of each cluster according to (20).

Step 4: Calculate the cluster central point remainder vector
[q1(l), q2(l)] of each cluster according to (21).

Step 5: Calculate the integer solution �h(l)/M� of the
congruence equation (9) according to (22).

Step 6: Calculate the cluster ambiguity vector [k1(l), k2(l)]
of each cluster according to (23).

Step 7: Calculate the pixel ambiguity vector [k1(s), k2(s)]
of each pixel according to the clustering result of Step 1. That
is to say, if pixel s belongs to the lth cluster, then we will
make [k1(s), k2(s)] = [k1(l), k2(l)].

Step 8: Calculate the filtered phase vector [ϕ̄1(s), ϕ̄2(s)] of
each pixel according to (26).

Step 9: Recover the unwrapped phase of each interferogram
according to (3).

Step 10: Reconstruct the terrain height of all pixels accord-
ing to (1).

For example, assume that B2/B1 = �1/�2 = 5/3, the the
relationship between the wrapped phases ϕ1 and ϕ2, and
ambiguity numbers k1 and k2 can be shown in Fig. 3. If the
intercept of a cluster’s centerline is 5/7 after clustering, then
we can know that its corresponding cluster intercept is 2/3.
So from (20), we know that the cluster central point phase
vector is [ϕ1(l), ϕ2(l)] = [5π/4, 3π/4]. Substituting them

Fig. 3. Relationship between (a) wrapped phases ϕ1 and ϕ2 and (b) ambiguity
numbers k1 and k2.

Fig. 4. Relationship between the cluster intercept intercept12 (l) and the
cluster ambiguity vector [k1(l), k2(l)].

into (21) yields [q1(l), q2(l)] = [3, 1]. Then �h(l)/M� can
be uniquely solved out to be 13 by (22), and the cluster
ambiguity vector will be [k1(l), k2(l)] = [2, 4] by (23).
In the same way, we can calculate all the cluster ambiguity
vectors corresponding to all the cluster intercepts. According
to the analysis of Section III-A, the total number of line
segments is 7. And the corresponding relationship between
the cluster intercept intercept12(l) and the cluster ambiguity
vector [k1(l), k2(l)] is shown in Fig. 4.

As can be seen from this example, if B2/B1 = �1/�2 is
known, then all the cluster ambiguity vectors corresponding to
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all the cluster intercepts can be calculated in advance, and then
we can directly find the cluster ambiguity vector corresponding
to a cluster by looking up the comparison table like Fig. 4.
In this case, steps 3–7 can be omitted.

E. Generalization for the MB InSAR Case

The closed-form robust CA-based DBPU and filtering algo-
rithm can be easily extended to MB cases. For MBPU, (7) can
be extended to

k1(l)�1 + ϕ1(l)

2π
�1 = k2(l)�2 + ϕ2(l)

2π
�2

= · · · = kN (l)�N + ϕN (l)

2π
�N . (31)

And the value range of the subscript i in all the previous
formulas will be from 1 to N . The straight lines in the
previous 2-D plane will become the spatial straight lines
in the N-dimensional space. Compared with the CA-based
DBPU algorithm, there is almost no difference, except for
the spatial dimensions where the algorithm performs. After
the clustering result is obtained by the procedures described
in [34] or [35], the unwrapped phase can be recovered cluster
by cluster according to steps 2–9 of Section III-D.

IV. PERFORMANCE ANALYSIS

In this section, three experiments on the simulated and real
InSAR data are used to test the performance of the proposed
closed-form robust CA-based MBPUF method. The first exper-
iment verifies the feasibility and effectiveness of the proposed
MBPUF method on a simplified profile, especially the validity
of the cluster phase filtering. The second experiment verifies
the reliability of optimal baseline combination in improving
the noise robustness of the MBPU method on a more realistic
profile. The third experiment tests the performance of the
method on a real MB InSAR data set. The first and third
experiments will give a comparison of the results of the
proposed method and the traditional CA-based MBPU method.

The first experiment is performed on a simple simu-
lated scenario, which has only two kind of height values
(50 and 150 m). Fig. 5(a) is the reference DEM used in
the simulation experiment. Fig. 5(b) and (c) are the simu-
lated noisy interferograms of the short and long baselines
(300 and 500 m), whose corresponding height ambiguities are
73.0 and 43.8 m, respectively. The mean coherence coefficient
of Fig. 5(b) is 0.8 and that of Fig. 5(c) is 0.7. The probability
density function of the noisy wrapped phase [42], [43] is
used to simulate the phase noise. Obviously, since the height
jump exceeds the height ambiguities of the two interferograms
((150 − 50) > 73 and (150 − 50) > 43.8), Fig. 5(b) and (c)
cannot be unwrapped using the traditional SBPU technique.
Therefore, only the MBPU technique can be used to solve
this problem. After completing the 10 steps described in
Section III-D, we can obtain the rest images of Fig. 5.
Fig. 5(d) is the intercept obtained by the linear combination
of Fig. 5(b) and (c) according to the first expression of (16).
Fig. 5(e) is the corresponding histogram of Fig. 5(d). And
Fig. 5(f) is the envelope of Fig. 5(e). From Fig. 5(e), we know

Fig. 5. (a) Reference DEM (unit: m). (b) Simulated interferogram for the
short baseline. (c) Simulated interferogram for the long baseline. (d) Intercepts
of all the pixels obtained by the linear combination of Fig. 5(b) and (c).
(e) Histogram of the intercepts. (f) Envelop of the histogram. (g) Filtered
interferogram for the short baseline. (h) Filtered interferogram for the long
baseline. (i) Height reconstruction result before cluster filtering. (j) Height
reconstruction result after cluster filtering. (k) Height error before cluster
filtering. (l) Height error after cluster filtering.

that there are two effective clusters, and the intercepts of each
cluster’s centerline are −0.3 and 1.05, respectively, so their
corresponding cluster intercepts are −1/3 and 1 according
to the set S with B2/B1 = �1/�2 = 5/3. Then, if the
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TABLE I

ERROR OF THE THREE EXPERIMENTS

traditional CA-based MBPU method is used, we need to
search 5 × 3 = 15 times to determine the cluster ambiguity
vector for each cluster, but only one time is needed when the
closed-form solution formula (23) is used. Of course, the two
cluster ambiguity vectors can also be determined by looking
up the comparison table shown in Fig. 4, which are [2, 3]
and [0, 1], respectively. Fig. 5(g) and (h) are the filtered
interferograms of the short and long baselines after cluster
phase filtering is completed. Compared with Fig. 5(b) and (c),
the phase noise of Fig. 5(g) and (h) is obviously weakened,
thereby verifying the effectiveness of cluster phase filtering.
Fig. 5(i) and (j) are the DEM obtained by (1) before and after
cluster phase filtering. In fact, Fig. 5(i) is the result obtained by
the traditional CA-based MBPU method, and Fig. 5(j) is the
result of the closed-form robust CA-based MBPUF method
proposed in this article. Fig. 5(k) and (l) show the height
errors of Fig. 5(i) and (j), respectively. The comparison of
the experimental results based on the old and new methods
is summarized in Table I. In Fig. 5(k), the mean value of the
height errors is 5.80 m, the standard deviation is 15.50 m, and
the normalized reconstruction square error, which is defined
in [22] and [33], is 0.022. In contrast, the mean height error
of Fig. 5(l) is −3.10 m, the standard deviation is 9.40 m,
and the normalized reconstruction square error is 0.013. These
experimental results show that the height accuracy is obviously
improved after cluster phase filtering is completed, thereby
verifying the feasibility and effectiveness of the closed-form
robust CA-based MBPUF method proposed in this article.

In the second experiment, two different baseline combi-
nations are tested on a more realistic scenario to verify the
necessity of optimal baseline combination. The DEM of the
mountainous area around the Isolation Peak (CO, USA) [5],
as shown in Fig. 6(a), is used to simulate the interferograms.
The minimum and maximum heights are 0 and 136.7 m,
respectively. Assume that the search window size is W2 = 2;
it is known from (27) that the ratio between the long baseline

Fig. 6. DEM of the Isolation Peak, CO, USA, and the reconstructed results
by the two different baseline combinations, 458 × 157 pixels. (a) Reference
DEM (unit: m). (b) Simulated interferogram for baseline 1. (c) Simulated
interferogram for baseline 2. (d) Simulated interferogram for baseline 3.
(e) Intercepts of all the pixels obtained by the linear combination of
Fig. 6(b) and (c). (f) Height reconstruction result using the combination
of Fig. 6(b) and (c). (g) Height error of Fig. 6(f). (h) Intercepts of all the
pixels obtained by the linear combination of Fig. 5(b) and (d). (i) Height
reconstruction result using the combination of Fig. 6(b) and (d). (j) Height
error of Fig. 6(i).

and the short baseline must be greater than or equal to 3.
Furthermore, according to the analysis of Section III-C,
the total ambiguity height of each baseline combination must
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Fig. 7. Data set corresponds to a mountainous area in Tongchuan, Shaanxi
Province, China, 736 × 191 pixels. (a) Reference SRTM DEM (unit: m).
(b) Interferogram corresponding to the short baseline. (c) Interferogram
corresponding to the long baseline. (d) Intercepts of all the pixels obtained
by the linear combination of Fig. 7(b) and (c). (e) Filtered interferogram of
the short baseline. (f) Filtered interferogram of the long baseline. (g) Height
reconstruction result before cluster filtering. (h) Height reconstruction result
after cluster filtering. (i) Height error of Fig. 7(g). (j) Height error of Fig. 7(h).

be greater than 136.7 m, and the length of B2 should be
as close as possible to B1. Therefore, three noisy interfer-
ograms with three different baselines (60, 200, and 320 m)
are simulated, as shown in Fig. 6(b)–(d). The corresponding
height ambiguities are set to 93.0, 27.9, and 17.4 m, respec-
tively, which make the length of any two baselines satisfy
the condition (30). Fig. 6(b) and (c) form the first baseline

TABLE II

MAJOR PARAMETERS OF TANDEM-X INSAR DATA SET

combination (B2/B1 = 10/3) as the optimal baseline com-
bination, and Fig. 6(b) and (d) form the second baseline
combination (B2/B1 = 16/3) as the suboptimal baseline
combination. The mean coherence coefficient of the three
interferograms are all set to be 0.9 to compare the effects of
different baseline combinations on the height-reconstruction
results under the same phase noise. Fig. 6(e) is the intercept
obtained by the linear combination of Fig. 6(b) and (c). The
corresponding DEM-reconstruction result using the proposed
closed-form robust CA-based MBPUF method is shown in
Fig. 6(f), and Fig. 6(g) is the height error of Fig. 6(a)–(f).
Fig. 6(h) is the intercept obtained by the linear combina-
tion of Fig. 6(b) and (d). Fig. 6(i) is the DEM-reconstruction
result of the second baseline combination using the proposed
closed-form robust CA-based MBPUF method. Fig. 6(j) shows
the error between Fig. 6(a) and (i). A comparison of the two
different baseline combinations is summarized in Table I. The
comparison results are as follows: the mean height error of
Fig. 6(f) is −0.78 m, the standard deviation is 8.95 m, and the
normalized reconstruction square error is 0.018. On the con-
trary, the mean height error of Fig. 6(g) is −2.37 m, the stan-
dard deviation is 16.67 m, and the normalized reconstruction
square error is 0.062. Obviously, based on these evaluation
indicators, the DEM-reconstruction result of the first baseline
combination is better than the second baseline combination.
Therefore, we can conclude that under the preconditions
that (27) and (30) are satisfied, the closer the length of the
two baselines is, the more accurate the DEM-reconstruction
result is. That is to say, this experiment verifies the reliabil-
ity of optimal baseline combination in improving the noise
robustness of the CA-based MBPU methods.

In the third experiment, a real and small-scale single-
pass TanDEM-X DB InSAR data set (736 × 191 pixels)
is considered to evaluate the performance of the proposed
method. The data set corresponds to a mountainous area in
Tongchuan, Shaanxi Province, China. The other parameters
about the data set are presented in Table II. Fig. 7(a) shows
the reference Shuttle Radar Topography Mission (SRTM)
DEM. Two single-pass InSAR interferograms with different
baseline lengths are shown in Fig. 7(b) and (c), whose base-
line lengths are 129.25 and 361.90 m, respectively. Fig. 7(d)
shows the intercept obtained by the linear combination of
Fig. 7(b) and (c). Fig. 7(e) and (f) are the filtered interfero-
grams of the short and long baselines after the cluster phase fil-
tering is applied. Fig. 7(g) and (h) are the DEM-reconstruction
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results using the interferograms before and after the clus-
ter phase filtering, which represent the results of the tradi-
tional CA-based MBPU method and the closed-form robust
CA-based MBPUF method. Fig. 7(i) shows the error between
Fig. 7(a) and (g). The comparison of the experimental results
based on the old and new methods is summarized in Table I:
the mean height error of Fig. 7(i) is 4.16 m, the standard
deviation is 7.48 m, and the normalized reconstruction square
error is 5.5280 × 10−5. Fig. 7(j) shows the error between
Fig. 7(a) and (h). The mean height error of Fig. 7(j) is
3.87 m, the standard deviation is 4.93 m, and the normalized
reconstruction square error is 4.2900 × 10−5. Therefore,
the experimental results demonstrate the effectiveness of the
proposed closed-form robust CA-based MBPUF method on
the real InSAR data.

V. CONCLUSION

PU and phase filtering are the key procedures of the
MB InSAR technique. To improve the performance of the
CA-based MBPU methods, a closed-form robust CA-based
MBPUF algorithm has been proposed in this article. The
main contributions of this study are as follows. First, it gives
the closed-form solving formulas of the cluster ambiguity
vector, which is helpful to improve the efficiency of the
CA-based MBPU algorithm. In addition, it provides a new
MB InSAR phase-filtering strategy that makes the CA-based
MBPU method capable of solving the phase-discontinuity
problem and improving the height-reconstruction accuracy
simultaneously. Moreover, it utilizes the optimal baseline
combination to improve the noise robustness of the CA-based
MBPU method. Three experiments with both simulated and
real MB InSAR data sets are used to verify the effectiveness
of the proposed method. It is worthwhile to mention that,
all the three improvements proposed in this article for the
CA-based MBPUF algorithm can also be used to improve
the performance of the TSPAInSAR technique. Therefore,
our future work should consider how to transplant the three
improvements into the TSPAInSAR technique.
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