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Abstract: High-precision monitoring of landslides is essential for understanding their kinematics and
reducing landslide induced damage. The spatiotemporal deformation variations of the Three Bears
landslide in northern California have not been systematically monitored and interpreted. In this
study, we applied advanced time-series InSAR analysis methods to characterize the kinematics of
the landslide covering two periods (2007–2011 and 2015–2017) with multi-track synthetic aperture
radar (SAR) images acquired from L-band ALOS PALSAR-1/2 satellites. Our results show that the
Three Bears landslide has been moving consistently, with the Line of Sight (LOS) deformation rate
exceeding 300 mm/yr from 2007 to 2011 and around 250 mm/yr from 2015 to 2017. The east–west
and vertical deformation components were inverted by integrating ascending and descending ALOS
PALSAR-2 interferograms during the 2015–2017 period, indicating that the landslide was dominated
by eastward movement and in a continuous deformation stage. Down-slope landslide motions
observed from adjacent satellite tracks with slightly different radar look vectors were used to verify
the accuracy of InSAR-derived results. Comparison between linearly detrended InSAR displacements
and precipitation records indicate that the landslide tends to accelerate during the wet seasons.
The results could allow us to better understand the kinematics of the landslide and provide significant
evidence for evaluating the potential for catastrophic failure and the threat posed by such failure to
human life and property. Combined with a proper geotechnical/geomechanical model, the results
would also facilitate the design and implementation of mitigation measures.

Keywords: Three Bears landslide; advanced time-series InSAR analysis; ALOS PALSAR-1/2;
deformation monitoring

1. Introduction

Landslides constitute one of the most frequent and serious natural hazards in mountainous areas
around the world, and can be triggered by various factors such as rainfall or snowmelt, earthquakes
and human activities [1,2]. Therefore, long-term monitoring of slope instability is key to understanding
the kinematic mechanisms of landslide movement as well as reducing landslide induced damage.
Many different surveying methods such as inclinometers, piezometers, photogrammetry, and global
positioning system (GPS) have been employed to monitor landslides [3–6]. However, some of these
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methods are spatially-limited, time-consuming, and logistically challenging. Optical remote sensing
techniques can also be used to monitor landslide movement, however, it is often difficult to obtain the
pre- and post-slide optical images as the quality of images depends on the cloud cover and identifiable
textural features. In general, optical imagery is always effective at monitoring shallow rapid landslides
that strip away vegetation and scour channels, but less so for tracking deep-seated landslide movements,
which often have a negligible effect on vegetation. Tracking landslide processes can be achieved if
high-resolution drone images or ground-based photogrammetry are available [7]. In recent years,
interferometric synthetic aperture radar (InSAR) techniques have shown great potentials for monitoring
active landslides in remote regions due to the advantages of all-day, all-weather, wide coverage, and high
spatial resolution, especially with the successive launch of SAR satellites and the great abundance of
SAR images [8–14].

The Three Bears landslide at Cedar Grove Ranch in northern California is located on the west
side of the South Fork Trinity River and is about 8.05 km south of its junction with the main stem
(Figure 1a). It is about 4.19 km long and 0.97 km wide, and the toe terminates on the South Fork Trinity
River. The most active part appears to be the lower third of the feature, immediately above the river
(Figure 1b) [15]. It is situated predominantly within a north–south trending band of weak Rattlesnake
Creek Terrane rocks, made up of a mélange of Paleozoic marine sedimentary and metasedimentary
rocks. Detailed geologic units are described in Figure S1 in the Supplementary Materials. The proximity
to the Cascadia subduction zone makes this area prone to strong ground shaking, with peak ground
accelerations in the order of 25–30% of gravity forces, which are likely to influence the activity of
the landslide [15]. The activity of the Three Bears landslide can be seen in the oldest available aerial
photographs from 1944 [15]. Then, a large discrete landslide was identified in the vicinity of Cedar
Grove Ranch by the California Department of Water Resources in 1979 [16]. Zhao et al. [10] only
detected the location and approximate boundary of the Three Bears landslide with ALOS PALSAR-1
InSAR imagery from 2007 to 2011. However, the spatiotemporal evolution of landslide movement
is rarely recorded and almost unknown to the public. Here, we utilize advanced time-series InSAR
techniques [17–19], along with L-band ALOS PALSAR-1 (2007–2011) and ALOS PALSAR-2 (2015–2017)
datasets, to reveal the spatial extent and temporal kinematic behavior of the Three Bears landslide
and further compare the InSAR-derived measurements with the meteorological records to better
understand the landslide motion in response to precipitation.
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Figure 1. Study area and coverage of the SAR datasets. (a) Spatial coverage of ALOS PALSAR-1/2 
satellite datasets (white boxes) superimposed on the shaded relief map. The red star represents the 
study area, while the blue lines represent the main rivers in the study area. The inset map presents 
the location of the study area in northern California, USA. (b) Enlarged shaded relief map of the Three 
Bears landslide generated by 1-m resolution LiDAR DEM. The blue lines show creeks and streams, 
and the thick blue line represents the South Fork Trinity River (SFTR). The brown polygon shows the 
dormant landslides identified by the United States Forest Service (USFS) while the polygon outlined 
in black indicates the boundary of the Cedar Grove Ranch Earthflow. The active landslide identified 
by Zhao et al. [10] is highlighted by a thick red polygon. (c) A field photo of the landscape around the 
Three Bears landslide (view northwest), provided by Juan de la Fuente. 

Since the ALOS PALSAR-1 satellite was launched in May 2006, the perpendicular baselines of 
the interferograms increased almost linearly during the first two years. Then, an orbit maneuver was 
conducted in July 2008 with a baseline shift of about 5000 m for P223 (Figure 2a) and for P224 (Figure 
2b). Thus, to reduce the artifact induced by the large baseline on the interferograms [21], the general 
strategy for time-series analysis based on ALOS PALSAR-1 images is to avoid the use of the SAR data 
acquired during the summer of 2008 [22], which results in a disconnected interferometric baseline 
network. To bridge the gap caused by the orbit maneuver in July 2008, we chose interferograms with 
a perpendicular baseline within 2000 m and a temporal baseline within 1000 days. After removing 

Figure 1. Study area and coverage of the SAR datasets. (a) Spatial coverage of ALOS PALSAR-1/2
satellite datasets (white boxes) superimposed on the shaded relief map. The red star represents the
study area, while the blue lines represent the main rivers in the study area. The inset map presents the
location of the study area in northern California, USA. (b) Enlarged shaded relief map of the Three
Bears landslide generated by 1-m resolution LiDAR DEM. The blue lines show creeks and streams,
and the thick blue line represents the South Fork Trinity River (SFTR). The brown polygon shows the
dormant landslides identified by the United States Forest Service (USFS) while the polygon outlined in
black indicates the boundary of the Cedar Grove Ranch Earthflow. The active landslide identified by
Zhao et al. [10] is highlighted by a thick red polygon. (c) A field photo of the landscape around the
Three Bears landslide (view northwest), provided by Juan de la Fuente.

2. Data

The study area, located in the mountainous region of northern California, is covered by dense
vegetation. In order to better characterize the kinematic behavior of the landslide’s movement,
a total of 66 L-band SAR scenes acquired from six different datasets were collected. The detailed
parameters for these six datasets are listed in Table 1, while their coverages are shown in Figure 1a.
One-arc-second digital elevation model (DEM) data with a resolution of 30 m, generated by Shuttle
Radar Topography Mission (SRTM) [20], was adopted to simulate and remove the topographic phase
in the interferometric processing.
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Table 1. The detailed parameters of the synthetic aperture radar (SAR) datasets used in this study.

Sensor ALOS PALSAR-1 ALOS PALSAR-2

Path 223 224 68 69 170 171

Orbital direction ascending ascending ascending ascending descending descending

Heading (◦) -10.18 -9.83 -10.88 -9.73 -170.17 –169.01

Incidence angle (◦) 37.52 40.18 30.45 40.63 39.60 29.22

Number of scenes 19 21 6 6 7 7

Acquisition period
(yyyymmdd) 20070314–20110325 20070213–20110109 20150210–20171114 20140914–20171105 20150525–20171023 20150307–20171111
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Since the ALOS PALSAR-1 satellite was launched in May 2006, the perpendicular baselines of
the interferograms increased almost linearly during the first two years. Then, an orbit maneuver was
conducted in July 2008 with a baseline shift of about 5000 m for P223 (Figure 2a) and for P224 (Figure 2b).
Thus, to reduce the artifact induced by the large baseline on the interferograms [21], the general
strategy for time-series analysis based on ALOS PALSAR-1 images is to avoid the use of the SAR data
acquired during the summer of 2008 [22], which results in a disconnected interferometric baseline
network. To bridge the gap caused by the orbit maneuver in July 2008, we chose interferograms with
a perpendicular baseline within 2000 m and a temporal baseline within 1000 days. After removing
the interferometric pairs with low coherence, twenty-six interferograms for P223 (Figure 2a) and
fifty interferograms for P224 (Figure 2b) were finally selected to conduct the following time-series
InSAR analysis.

Remote Sens. 2019, 11, x FOR PEER REVIEW 4 of 19 

 

the interferometric pairs with low coherence, twenty-six interferograms for P223 (Figure 2a) and fifty 
interferograms for P224 (Figure 2b) were finally selected to conduct the following time-series InSAR 
analysis. 

In light of the sparse temporal sampling of ALOS PALSAR-2 data in the study area, all available 
SAR images were used to generate the interferograms without the spatial and temporal baseline 
constraints. Although the perpendicular baselines of interferograms were smaller than those from 
the ALOS PALSAR-1 data, the quality of the interferograms was also strongly influenced by the large 
deformation gradient and temporal decorrelation. After removing the interferometric pairs with poor 
coherence, seven interferograms for P68 (Figure 2c), four interferograms for P69 (Figure 2d), fourteen 
interferograms for P170 (Figure 2e), and eleven interferograms for P171 (Figure 2f) were used to 
estimate the average deformation velocity and time-series displacements of the landslide. 

C-band Envisat ASAR and Sentinel-1A/B data were also processed to obtain the landslide 
deformation. Unfortunately, a large deformation gradient and thick vegetation make it difficult to 
sustain good coherence and provide useful signals on this densely vegetated landslide (Figure 1c). 

 
Figure 2. Temporal-spatial baseline distribution of selected interferograms used in this study. The 
SAR acquisition dates are shown in the format of YYYYMMDD (e.g., 20070314) while Y-axis 
represents the perpendicular baseline of the interferogram. (a) and (b) show the interferograms 
generated by ascending ALOS PALSAR-1 data for Path 223 (P223) and Path 224 (P224); (c) and (d) 
show the interferograms generated by ascending ALOS PALSAR-2 data for Path 68 (P68) and Path 69 
(P69); (e) and (f) show the interferograms generated by descending ALOS PALSAR-2 data for Path 
170 (P170) and Path 171 (P171). 

3. Methodology 

Depending on the number of available SAR images, two advanced time-series InSAR analysis 
methods were employed to characterize the kinematic behavior of landslide movement. 

Figure 2. Temporal-spatial baseline distribution of selected interferograms used in this study. The SAR
acquisition dates are shown in the format of YYYYMMDD (e.g., 20070314) while Y-axis represents
the perpendicular baseline of the interferogram. (a) and (b) show the interferograms generated
by ascending ALOS PALSAR-1 data for Path 223 (P223) and Path 224 (P224); (c) and (d) show the
interferograms generated by ascending ALOS PALSAR-2 data for Path 68 (P68) and Path 69 (P69);
(e) and (f) show the interferograms generated by descending ALOS PALSAR-2 data for Path 170 (P170)
and Path 171 (P171).

In light of the sparse temporal sampling of ALOS PALSAR-2 data in the study area, all available
SAR images were used to generate the interferograms without the spatial and temporal baseline
constraints. Although the perpendicular baselines of interferograms were smaller than those from
the ALOS PALSAR-1 data, the quality of the interferograms was also strongly influenced by the large
deformation gradient and temporal decorrelation. After removing the interferometric pairs with
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poor coherence, seven interferograms for P68 (Figure 2c), four interferograms for P69 (Figure 2d),
fourteen interferograms for P170 (Figure 2e), and eleven interferograms for P171 (Figure 2f) were used
to estimate the average deformation velocity and time-series displacements of the landslide.

C-band Envisat ASAR and Sentinel-1A/B data were also processed to obtain the landslide
deformation. Unfortunately, a large deformation gradient and thick vegetation make it difficult to
sustain good coherence and provide useful signals on this densely vegetated landslide (Figure 1c).

3. Methodology

Depending on the number of available SAR images, two advanced time-series InSAR
analysis methods were employed to characterize the kinematic behavior of landslide movement.
Furthermore, two-dimensional deformations were retrieved by fusing the measurements from both
ascending and descending satellites in the same period.

3.1. Interferometric Point Target Analysis (IPTA)

Interferometric point target analysis (IPTA) is a time-series InSAR technique that provides multiple
strategies for the identification of point target candidates, spatial/temporal phase unwrapping, and
single- or multi-patch regression analysis processing [18,23].

In light of the large deformation gradient and dense vegetation cover in our study area, multi-master
interferograms were considered to maximize the coherence. First, we applied the spectral diversity
of Single Look Complex (SLC) images to identify the point target candidates based on the fact that
the backscattering intensity of a point target remains almost stable in the case of different fractional
azimuth and range bandwidths [18]. To better separate point targets in the dense vegetated areas,
the pixels with a coherence value larger than 0.3 were chosen as an initial point target candidate.
Then, we iteratively retrieved the linear deformation component and the DEM error of point target
candidates based on the wrapped differential interferometric phases using a two-dimensional regression
analysis model. Followed by temporal and spatial filtering to the residual unwrapped phases, the
nonlinear deformation component and atmospheric artifact are finally separated. Thus, the non-linear
time-series deformation of each point target can be obtained by calculating the sum of linear and
nonlinear deformation components.

3.2. Small Baseline Subsets (SBAS)

Due to the limited interferometric sets from the ALOS PALSAR-2 satellite, the small baseline subsets
(SBAS) InSAR technique [17,24,25] was applied to retrieve the landslide deformation. To obtain the
DEM error and time-series deformation, a refined SBAS-InSAR method was applied in our study, which
divides the interferograms into high- and low-quality sets and estimates the parameters iteratively [26].
It is worth noting that the accuracy of the InSAR-derived results depends on the quality of the
unwrapped interferograms. In general, a minimum cost flow (MCF) method with the aid of coherence
is adopted to unwrap the interferogram [27]. However, the continuous motion of the Three Bears
landslide makes it troublesome to produce effective long-duration (>70 days) interferograms (Figure 3a).
Therefore, a deformation model constructed from a stack of correctly-unwrapped short-duration
interferograms (Figure 3b) was introduced and then subtracted from the original interferogram.
Thus, we could maintain coherence and minimize the phase unwrapping error. After the residual
interferometric phase was filtered and unwrapped, the subtracted deformation derived from the
deformation model was added back into the residual unwrapped interferogram (Figure 3c). This
technique works well because it prevents the phase gradient of adjacent pixels exceeding π radian
(5.9 cm for ALOS PALSAR-2). We carefully compared the new unwrapped interferograms (Figure 3c)
with the original wrapped interferograms (Figure 3a) to ensure that no artifacts were introduced in
this processing. Once the interferograms were successfully unwrapped, the time series deformation
could be readily retrieved by using either the least squares (LS) or a singular value decomposition
(SVD) method.
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Figure 3. An example of unwrapping error correction based on a deformation model. (a) The original
unwrapped phase of a 364-day interferogram (e.g., 20150922–20160920 for P68). (b) The corresponding
deformation model constructed from a stack of correctly-unwrapped short-duration interferograms.
(c) The new unwrapped phase with the aid of deformation model. (d) and (e) show the unwrapped
phase extracted along the profile P1P1′ and P2P2′, respectively. The red polygon shows the boundary
of the active landslide and the white lines represent the location of the profiles.

3.3. Two-Dimensional Time-Series Inversion with Multi-Track SAR Datasets

The SAR data from each independent track were processed using the above-mentioned IPTA
or SBAS, so the InSAR observations were limited to the LOS ascending or descending direction.
The availability of ascending and descending ALOS PALSAR-2 measurements in the Three Bears
landslide provides us with an opportunity to extend the displacement vectors to 2-D or 3-D [28].
Theoretically, the three-dimensional (3-D) deformation can be retrieved by integrating InSAR
observations acquired from at least three independent LOS directions [28,29]. However, since
the current SAR satellites are operated in the near-polar orbits, which are insensitive to the north–south
movement, the displacement in the north–south direction can hardly be accurately estimated just based
on the ascending and descending right-looking InSAR measurements. For ALOS PALSAR-2 datasets
listed in Table 1, the contributions of the three (north–south, east–west, and vertical) components to
the LOS direction were about 9–11%, 48–64%, and 76–87%, respectively. Therefore, the north–south
deformation contribution can be neglected to some extent [19]. Thus, only the east–west and vertical
deformation components were simultaneously inverted by using a multidimensional small baseline
subset (MSBAS) InSAR technique [19,30].

Considering that all interferograms from K independent SAR imaging geometries have been
correctly unwrapped and resampled into a common geographic coordinate system, then the
two-dimensional time-series inversion model can be formulated as the following form:
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where A is the coefficient matrix composed of the time intervals of two consecutive SAR images and
N + 1 represents the number of all of the available SAR images; {Ue, Uu} = {− cosα sinθ, cosθ} is the
east–west and vertical components; α and θ are the azimuth and incidence angles, respectively; ve and
vu are the unknown east–west and vertical deformation rates that are to be estimated, which represent
the deformation rate between the two adjacent SAR acquisitions ti and ti+1; and Φ denotes the observed
unwrapped phases. It can be clearly seen that the design matrix in Equation (1) is rank-deficient
because there are no available connections among the InSAR observations from independent imaging
geometries. Therefore, SVD method and Tikhonov regularization operator were simultaneously
adopted to solve the unknown deformation rates [19] and the east–west and vertical time-series
deformation are readily reconstructed by integrating the computed deformation rates.

3.4. Deformation in the Down-Slope Direction

Only the projection of the three-dimensional ground deformation along the LOS direction can
be obtained using InSAR technique. However, most of the sliding motion generally occurs in the
down-slope direction (e.g., [31]). With some assumption, the LOS deformation can be transferred to the
slope direction determined by a specific slope angle and azimuth direction. In this work, we projected
the LOS measurements to the down-slope direction and then verified the InSAR-derived results based
on the overlapping observations from independent satellite tracks.

The transformation from the radar LOS direction to down-slope direction can be easily
implemented with the following amplification/scaling factor (e.g., [11,32]):

A = 1/(l ∗ sT) (2)

where l = [ sinθ sinα − sinθ cosα cosθ ] is the unit vector of the LOS direction, while s =

[− cos β cosγ − cos β sinγ sin β ] is the unit vector of the down-slope direction, in which β and γ
are the slope angle and slope aspect, respectively.

4. Results

4.1. Line of Sight (LOS) Deformation Maps

The annual LOS deformation rates derived from each independent SAR datasets are shown in
Figure 4a–f, respectively. It is worth noting that the positive values indicate the landslide motion
toward the satellite sensor while the negative values represent the landslide motion away from the
satellite sensor. As seen on the deformation maps, the large displacement mainly occurs in the eastern
part of the Cedar Grove Ranch Earthflow, which is consistent with the active landslide identified by
Zhao et al. [10]. The deformation distributions were similar, but the deformation magnitudes were
slightly different for P223 and P224 during the period of 2007–2011 (Figure 4a,b). This is mainly
because our study area is located in the near range of the P223 swath, but in the far range of the
P224 swath, leading to a difference of around 2.7◦ between the two radar LOS directions for the same
ground target. Furthermore, the average ascending LOS deformation rates were almost similar to
those of the descending LOS velocities during the period of 2015–2017, but the signs were the opposite,
indicating that the landslide moved toward the satellite sensor in the descending tracks, but away from
the sensor in the ascending tracks (Figure 4c–f). These observations also suggest that the landslide
displacements must be dominated by the horizontal motions. We can also see that the Three Bears
landslide underwent strong movement with the deformation rate exceeding 300 mm/yr from 2007
to 2011, but the motions decreased to around 250 mm/yr from 2015 to 2017. The reasons can be
summarized as follows: (1) It may be mainly caused by the sparse temporal sampling during the period
of 2015–2017, especially for datasets P69 and P171; and (2) The study area suffered a persistent drought
from the period of December 2011 to March 2017 [33], which may have also caused the reduction in the
deformation rate.
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Figure 4. Average LOS deformation rate maps of the Three Bears landslide calculated with L-band 
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Figure 4. Average LOS deformation rate maps of the Three Bears landslide calculated with L-band
SAR datasets (unit: mm/yr). The figures in the first and second row show the results derived from
ascending datasets: (a) P223 of ALOS PALSAR-1 (data period: 2007–2011), (b) P224 of ALOS PALSAR-1
(data period: 2007–2011), (c) P68 of ALOS PALSAR-2 (data period: 2015–2017), and (d) P69 of ALOS
PALSAR-2 (data period: 2014–2017). The figures in the third row show the results derived from
descending datasets: (e) P170 of ALOS PALSAR-2 (data period: 2015–2017) and (f) P171 of ALOS
PALSAR-2 (data period: 2015–2017).

To better analyze spatiotemporal characteristics of landslide motion, we focused on the time-series
deformation from 2007 to 2011. Figure 5a,b show the time-series deformation of the active landslide
along the radar LOS direction from two independent SAR datasets P223 and P224, respectively.
The time-varying and spatial patterns were basically consistent. In general, the landslide moved slowly
during the intervening summer months, but moved quickly in the wet seasons from November to
April (Figure 6). Furthermore, we can also see in Figure 5a,b that ground movement was not spatially
uniform within the active landslide region (red polygon), which can be segmented into three sections
along its longitudinal axis: the zone of larger movement in the southeastern part of the landslide
(Zone 1), the zone of medium movement in the middle part (Zone 2), and the zone of less movement
in the northwestern part (Zone 3). The area of Zone 1 is about 0.79 km2 with an average cumulative
LOS deformation rate ranging from −200 mm/yr to −400 mm/yr, while the area of Zone 2 is around
0.95 km2 with an average cumulative LOS deformation rate ranging from −60 mm/yr to −200 mm/yr
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from 2007 to 2011. The area of Zone 3 is about 0.85 km2 with an average cumulative LOS deformation
rate ranging from −10 mm/yr to −60 mm/yr from 2007 to 2011.
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Figure 5. Cumulative deformation along the radar LOS direction for (a) Path 223 (P223) from 14 March
2007 to 23 December 2010 with the reference SAR acquisition date 20070314 and (b) Path 224 (P224)
from 13 February 2007 to 9 January 2011 with the reference SAR acquisition date 20070213. The color
scale shows the LOS deformation in millimeters and the white line represents the boundary of different
sections inferred by the InSAR-derived deformation pattern and the compressional morphologic
features. It is worth noting that the positive values indicate the landslide motion toward the satellite
sensor, while the negative values represent the landslide motion away from the satellite sensor.
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1 
 

 

Figure 6. Cumulative deformation along the radar LOS direction for Path 223 (blue dots) and Path 224
(green dots) of six feature points (FP1, FP2, FP3, FP4, FP5, and FP6) as shown in Figure 5a.

4.2. Two-Dimensional Deformation Estimation by Integrating Ascending and Descending ALOS PALSAR-2 Images

Combining the results shown in Figure 4c–f with the slope and aspect information derived from
DEM data, it can be deduced that the Three Bears landslide primarily moved eastward horizontally.
Since both ascending and descending ALOS PALSAR-2 data had the same time span from 2015 to 2017,
we derived the east–west and vertical deformation components based on Equation (1) by using eight
(six from P68 and two from P69) ascending interferograms and eighteen (fourteen from P170 and four
from P171) descending interferograms.
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The two-dimensional deformation rate maps and the corresponding standard deviations are
shown in Figure 7. It can be seen that the east–west deformation rate varied from −50 mm/yr to 500
mm/yr (Figure 7a), while the vertical deformation rate ranged from−150 mm/yr to 50 mm/yr (Figure 7b),
which only accounted for a third of the horizontal deformation. Furthermore, the east–west deformation
pattern was very similar with the LOS time-series results shown in Figure 5, indicating that the landslide
was dominated by eastward movement and relatively small vertical deformation. Moreover, the
two-dimensional time-series deformations of the active landslide are presented in Figures 8 and 9,
respectively. It can be seen from Figure 8 that there was a continuous eastward movement of the
landslide and obvious uneven deformation patterns were also visible during the whole monitoring
period. The maximum cumulative east–west deformation from March 2015 to November 2017 could
reach up to 1400 mm in Zone 1, but just 500 mm in Zone 2, and less than 300 mm in Zone 3. However,
a different pattern and trend was seen in the cumulative vertical deformation. It can be seen from
Figure 9: (1) that the landslide in Zone 1 experienced continuous subsiding deformation during the
whole period with a maximum cumulative displacement up to −500 mm; (2) The landslide in Zone
2 presented a relatively small movement before February 2017 with an average deformation rate of
−20.4 mm/yr, but moved quickly after February 2017 with an average deformation rate of −44.1 mm/yr,
where the maximum vertical displacement amounted to −200 mm; and (3) The landslide in Zone 3
showed less vertical movement than the other two zones with a maximum vertical displacement just
up to −100 mm during the period of March 2015 to November 2017.
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Figure 7. Two-dimensional deformation rate maps from 2015 to 2017 calculated from ascending and
descending SAR datasets (unit: mm/yr): (a) the east–west deformation; (b) the vertical deformation;
(c) the standard deviation (STD) of the estimated east–west deformation rate; and (d) the standard
deviation (STD) of the estimated vertical deformation rate. The red polygon shows the active landslide,
while the white line represents the boundary of different sections inferred by the InSAR-derived
deformation pattern and the compressional morphologic features.
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Figure 8. Cumulative east–west deformation from 7 March 2015 to 11 November 2017 inverted by
using ascending and descending ALOS PALSAR-2 satellite datasets. It is worth noting that the positive
values indicate eastward movement while the negative values represent westward movement.
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Figure 9. Cumulative vertical deformation from 7 March 2015 to 11 November 2017 inverted by using
ascending and descending ALOS PALSAR-2 satellite datasets.

5. Discussions

5.1. Verification of Deformation Results from Multi-Track Satellite Datasets

Since in situ observations were unavailable for our study area, we could not conduct the
cross-validation with ground-truth data. Therefore, independent datasets with almost the same
timespan were analyzed to verify the precision of the InSAR-derived results. In light of the different
imaging geometries of SAR datasets, the radar LOS directions were different for the same ground
target in each independent track, but the down-slope direction was identical by considering the
amplification/scaling factor of different tracks based on Equation (2).

The slope angle and slope aspect β and γ can be derived based on the LS method if two or more
different LOS observations can be obtained. To produce a stable solution, the deformation rates were
down-sampled into 50 m. The optimal slope angle and slope aspect were finally determined by
searching for the minimum residuals among the down-slope deformation rates from P68, P69, P170,
and P171 in this study.

Figure 10 shows the LOS and down-slope deformation rates of the active landslide (red polygon
in Figure 4), which were extracted separately from P68, P69, P170, and P171. The LOS deformation
patterns from adjacent satellite tracks were similar to each other (e.g., P68 and P69, P170 and P171); but
there were also differences in the magnitude of deformation rates, especially for the descending and
ascending observations. However, the similar deformation values were clearly visible in the down-slope
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direction with the maximum down-slope deformation rate of about −450 mm/yr. Thus, we could
draw the following conclusion: most of the difference in the LOS direction can be explained by the
difference in the SAR looking angle between the adjacent satellite tracks. Meanwhile, the standard
deviation of the down-slope difference between P68, P69, P170, and P171 was about 25.4 mm/yr.
Accordingly, assuming the precisions of the results from independent paths were equal, the precision
of the InSAR-derived measurement was around 18 mm/yr. The reason for this large discrepancy was
mainly that there were only four usable short-duration interferograms involved in the deformation
calculation for P69, which may have caused an underestimation in the deformation rate.Remote Sens. 2019, 11, x FOR PEER REVIEW 14 of 19 
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Figure 10. Average annual LOS (left column) and down-slope (right column) deformation rates of
active landslide extracted from P68 ((a) and (b)), P69 ((c) and (d)), P170 ((e) and (f)) and P171 ((g) and
(h)) (unit: mm/yr). It is worth noting that the same color legend is used in the right column but a
different one in the left column.
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Due to the slight difference in the incidence angle between P223 and P224, the LOS deformation rates
were compared to verify the precision of InSAR-derived results from 2007 to 2011. The corresponding
standard deviation was about 23.4 mm/yr with the precision of 17 mm/yr.

5.2. Correlation between Landslide Motion and Seasonal Precipitation

A good correlation between the sliding acceleration and precipitation has been presented in many
cases [34,35]. However, there is a time lag between the peaks of deformation and precipitation [10,34].
In order to reveal the correlation between landslide motion and precipitation, we collected historical
rainfall data and compared it with the time-series deformation derived from ALOS PALSAR-1/2 satellites.
An example at point FP2 (white cross shown in Figure 5a), which is located in Zone 1, is shown in Figure 11.

Singular value decomposition (SVD) [17] was first used to integrate the time-series deformation
measurements from P223 and P224. The temporal intervals of integrated time-series deformation
ranged from 17 to 184 days with an average of about 43 days. We can see that the results from these
two independent tracks were consistent with each other (Figure 11a). The cumulative movement
of −1530 mm along the LOS direction was projected as much as −2460 mm along the down-slope
direction. Furthermore, the increased temporal sampling provides us with the possibility for us
to better understand the landslide behavior in response to precipitation. Then, the linear trend
component (black dash line in Figure 11a) was removed from the original InSAR-derived time-series
result by using the linear regression model in order to reveal the seasonal kinemics of the landslide.
Finally, to synchronize the temporal resolution of InSAR measurements and precipitation data, the
linearly detrended down-slope displacements and 30-day accumulative precipitation were compared
(Figure 11b). Since no meteorological station information could be directly obtained in the Three
Bears landslide region, we obtained the daily precipitation records of the nearest rainfall monitoring
gauge, which is 31.2 km east of the landslide, from the Department of Water Resources, California Data
Exchange Center. As seen on the red bars of Figure 11b,d, the 30-day accumulative precipitation of the
study area varied seasonally. The rainfall was abundant from October to April during the wet season
(winter), which infiltrated and saturated the ground in the basal part of the landslide. Our results
showed that sliding motion tended to accelerate almost immediately after the autumn rain began
from October or November (gray box in Figure 11b). In particular, the landslide accelerated abruptly
at the end of 2010 and the beginning of 2011 with a down-slope sliding rate of up to 10.5 mm/day
between 23 December 2010 and 9 January 2011, which was about 10 times higher than the average rate
per day during the whole monitoring period. This finding is consistent with the reconnaissance field
investigation conducted by Forest Service Region 5 Northern Province geologists who observed that
the landslide was very active during the winter of 2010–2011, and that the activity continued into the
summer of 2011 [15].

A correlation analysis between the InSAR measurements and precipitation was also conducted
for the period of 2015–2017 (Figure 11c,d). As expected, either linearly detrended east–west
or vertical movements showed similar seasonal oscillations with the precipitation (Figure 11d).
However, the response of the landslide motion to precipitation was not instantaneous, showing a
certain time lag between the peaks of deformation and precipitation with a lag of about one month
or more in our study. Similar phenomena have been reported elsewhere such as the Boulder Creek
landslide in northern California with a lag of 1–2 months [10], and the Portuguese Bend landslide in
southern California with a lag of 2–6 weeks [36]. Unfortunately, it is impossible to determine the time
lag with better temporal resolution since the temporal sampling of ALOS PALSAR-2 data was low
during the monitoring period.
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Figure 11. Correlation between the InSAR-derived time-series measurements and 30-day accumulative
precipitation. (a) Cumulative down-slope movement at FP2 (shown in Figure 5a) by fusing time-series
deformation from P223 (blue dots) and P224 (green dots) with the singular value decomposition (SVD)
method (2007–2011). (b) Comparison between linearly detrended down-slope movement and 30-day
accumulative precipitation records. (c) Cumulative east–west and vertical movement at FP2 by fusing
the ascending and descending interferograms (2015–2017). (d) Comparison between linearly detrended
two-dimensional movement and 30-day accumulative precipitation records. Here, the point targets
within 50 m × 50 m window, centered on the point FP2, were involved to compute the corresponding
uncertainty of the time-series deformation. The error bar represents one sigma. The gray box shown in
(b) and (d) indicates the sliding acceleration timespan. The pink pentagram shown in (b) indicates the
time of the 6.5 Mw earthquake on 9 January 2010.
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6. Conclusions

Advanced InSAR time series methods are presented with multi-track L-band satellite SAR
datasets to characterize the kinematics of the Three Bears landslide at the Cedar Grove Ranch covering
two periods (2007–2011 and 2015–2017). First, one-dimensional (1-D) LOS deformation maps were
generated individually from SAR datasets acquired by ascending ALOS PALSAR-1/2 and descending
ALOS PALSAR-2 satellites. Then, cross-validation was carried out between the deformation results
from independent tracks. The precision of the deformation rates derived from P223 and P224 (ALOS-1;
2007–2011) was 17 mm/yr in the LOS direction while the precision of the result from P68, P69, P170,
and P171 (ALOS-2; 2015–2017) was 21 mm/yr in the down-slope direction. The east–west and vertical
components of the landslide from 2015 to 2017 were retrieved by integrating the ascending and
descending InSAR measurements, indicating that the landslide is dominated by eastward movement
while the vertical deformation is relatively small, which suggests that it is a slow-moving landslide.
Finally, the correlation between InSAR-derived measurements and seasonal precipitation revealed that
greater deformation occurred following increased precipitation with a certain time lag.

It has been demonstrated that the movement of slow-moving landslides can be readily measured
in the forested mountainous regions using advanced time-series InSAR analysis methods and L-band
InSAR observations. This research provides first-hand, relatively complete, and accurate information
about the Three Bears landslide. However, more detailed landslide motions cannot be revealed if
based solely on ALOS PALSAR-1/2 datasets, due to the poor temporal resolutions. Airborne SAR
missions (i.e., uninhabited aerial vehicle synthetic aperture radar (UAVSAR)), which can provide high
spatial resolution images and various options for the imaging viewing geometries and acquisition time
intervals, are highly promising to reveal the dynamics of landslide motions in a finer temporal scale.

The information on spatiotemporal deformation and general magnitude revealed by the methods
applied by this investigation is extremely valuable in guiding risk assessments over broad areas as
well as to focus further field investigations. These methods could also be used to identify precursory
movements that may occur on other landslides prior to catastrophic failure [37]. Such investigations
could focus on landslides that pose large adverse consequences to life and property.
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