

EGS – Challenges and Technology Adaptation

Coal and Geothermal: A Path Forward Workshop
Dallas, TX
January 10, 2017

C-FER Technologies

EGS Projects

- Approximately 30 EGS pilot projects since 1974
- Locations include: Australia, France, Germany, Japan, Korea, Sweden, Switzerland, UK, and USA
- Examples of pilot projects that have produced power:
 - Landau (Germany) 3 MW
 - Soultz-sous-Forêts (France) 1.5 MW
 - Cooper Basin (Australia) 1 MW
- Despite availability of heat, EGS underutilized to-date:
 - High capital cost and perceived technical risk

Habanero Pilot Plant, Cooper Basin (Australia)
Source: ThinkGeoEnergy | www.thinkgeoenergy.com

EGS has only seen limited implementation in pilot-scale operations.

EGS Technical Challenges (1)

- Reservoir Development
 - Stimulation techniques and technologies to effectively create multiple flow paths between wells
 - Preventing "short circuiting" and temperature decay over time
- Well Construction and Completion
 - High capital costs
 - Thermal well design
 - Well Integrity Management

Cost of Geothermal Wells

Source: The Future of Geothermal Energy | http://geothermal.inel.gov

EGS Technical Challenges (2)

- Production Management
 - In-well designs to control injection and production flow paths
 - Reliable artificial lift systems
 - Flow assurance: corrosion and scale mitigation

C-FER Technologies

SAGD aka Reverse EGS

- Thermal heavy oil operations heat the ground with steam to mobilize bitumen instead of recovering heat from the ground
- Well pairs used with flow between injector and producer
- SAGD 180 250 °C
- CSS ~ 350 °C
- Equipment and practices may be adapted to EGS

Steam-assisted Gravity Drainage

Source: The Geological Society | www.pgc.lyellcollection.org

Thermal well design approaches and equipment could improve the safety, reliability and efficiency of EGS operations.

O&G Technology Adaptation for EGS

- Expertise and new technologies developed for SAGD and unconventional production
 - Multi-lateral wellbores
 - Multi-zone hydraulic fracturing
 - Thermal well casing design
 - Thermal completion equipment
 - Downhole flow control devices
 - High temperature pumping systems
- Potential to adapt these for EGS

C-FER Technologies

Drilling costs

 Directional drilling may enable horizontal wells, multilateral completions may reduce costs

Increased reservoir contact

 Multi-stage hydraulic fracturing may increase the connected reservoir contact for injected fluid

More efficient well designs could reduce costs and increase efficiency

Reservoir Development

Types of Drilling Trajectories

Source: Tortoise Capital Advisors | www.uncoverenergy.com

Frac Valve Completion
Source: Halliburton | www.Halliburton.com

Thermal Well Design

- Well Reliability
 - Improved well design leads to reduced risk and improved economics
- Thermal Well Design
 - Temperature differentials may result in plastic deformation and strain localization in cemented casing
 - Use of post-yield, strain-based design approaches recommended
 - Casing selected to provide favorable postyield characteristics (not elastic capacity)
- Thermal Casing Connections
 - Procedures such as ISO/PAS 12835:2013 suitable for qualifying geothermal casing connections
 - Use of qualified thermal connection designs may enhance well integrity

Example Stress-Strain Curves

Source: ISO/PAS 12835 | http://www.iso.org

Well Construction and Completion (1)

- Casing Design
 - AT may result in plastic deformation and strain localization
 - Use of post-yield, strain-based design recommended
 - Material selected to provide favorable post-yield characteristics (not elastic capacity)
- Casing Connections
 - Use of qualified thermal connection designs may improve well integrity
 - Evaluation protocol used to qualify casing connections up to 350 °C

Casing connection qualification procedures help to ensure well integrity

Connection Testing System (CTS)
Source: C-FER Technologies | www.cfertech.com

Well Construction and Completion (2)

- Thermal Wellheads
 - Novel completion designs used for thermal oil wells have been applied to geothermal wells
 - Streamlined workover operations
- Thermal Cement
 - Alternative thermal well cements
 - Improved cement placement procedures
- Vacuum Insulated Tubing (VIT)

Source: C-FER Technologies | www.cfertech.com

Production Management (1)

- Downhole Flow Control Devices (FCDs)
 - Could be placed on EGS injector and/or producer well(s)
 - Reduce short-circuiting by managing flow rates and pressures
 - Provide the ability to shut-off regions

Source: Vachon et al. | SPE Paper 174416

Well completions with FCDs can be custom designed to minimize EGS short-circuiting

Production Management (2)

- Artificial lift
 - Lineshaft Pumps (LSPs) are commonly used but may limit well design options
 - High temperature Electric Submersible
 Pumps (ESPs) may enable new Hz
 developments
 - ESPs currently operating at up to 250°C for thermal O&G operations

Geothermal Lineshaft Pump Source: Frost Consulting Group | www.frostconsultinggroup.net

Reliable pumps capable of operating in directional wells would allow optimized well designs

Source: Schlumberger | www.schlumberger.com