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Lithium demand has risen steadily in the last years, mainly due to the increased use of rechargeable batteries for applications such as portable
electronics and electronic vehicles . Geothermal waters have been suggested as an alternative resource to meet the increased lithium demand. Below
we present a method for the recovery of lithium from geothermal waters; a supercritical fluid extraction of lithium using strategically designed and
synthesized lithium selective crown ethers
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