Transporting Geothermal Heat to Condition Buildings

Zhiyao Yang, Xiaobing Liu Ph.D., Kyle R. Gluesenkamp Ph.D., Ayyoub M. Momen, Ph.D. Oak Ridge National Laboratory

Introduction

- To overcome the barrier of distance between resources and demand, this project designs and evaluates innovative technologies to transport geothermal energy.
- A screening tool is being developed to quickly evaluate the economic performance of new technologies under user-defined geothermal resource and demands.
- 24% of U.S. primary energy is used for heating below 120°C (248°F), mostly met by electricity and natural gas.
- US low-temperature geothermal resources (<90°C/194°F) have potential to provide 42,600 MW_{th} heat; less than 2% of this has been installed.
- In addition to hydrothermal resources, 25 billion barrels/year of geothermal fluid (mostly water) at 80–150°C are co-produced at oil and gas wells in the US (DOE 2015).

Method

Co-production

(map generated with NREL Geothermal Prospector)

Review available low-temperature geothermal resources

Area Suitable for Geothermal Heat Pumps (Entire U.S.)

Location of geothermal resource areas

(http://geoheat.oit.edu/dusys.htm)

Population density Locations of oil/gas wells with bottom within a 50 km radius of borehole temperature >215°F (102°C) oil/gas wells in Texas

(Xiaobing Liu et al., 2015)

system complexity/uncertainty Analyzed Under consideration Tanker truck vs. pipeline 11 12 13 14 15 16 17 18 19 **Distance** [mile] pipeline without ROW --pipeline ROW= 1\$/ft/yr for 20 yr —Tanker truck *ROW = right of way

Highlights

Transported energy density

Symbol shape:

Symbol color:

Water

PCM

O Heating application

Cooling application

Solid desiccant

Liquid desiccant

Other desiccant

Symbol size indicates relative

Design proposed system for target commercial buildings

Design parameters determined with ORNL's SorpSim program

Economic analysis

Key performance metrics:

- Simple payback period
- Cooling provided per unit primary energy consumed: ➤ Transportation fuel
 - ➤ Electrical loads
- National/regional technical potential energy savings vs. baseline system

Case Study Results

30X

250

200

Case study of proposed system in Houston, TX office buildings: promising results

- Technical challenges:
- Maintain vacuum at components
- Reduce required volume of absorption working fluid
- Design of two new semi-open, "half-absorption systems" (hardware, controls)
- Adapt to varying production and sparse distribution of geothermal resources

Conclusions

- The proposed two-step geothermal absorption (TSGA) technology has potential to utilize low-temperature geothermal energy to provide space cooling to buildings at some distance from the geothermal resources.
- It can reduce fossil fuel consumption, peak electric demand, and avoid using refrigerants with high potentials for global warming and ozone depletion.
- Improving the transported energy density can reduce the transportation cost and stretch the viable distance.

