

Generating Renewable Energy from Co-Produced Water at Oil & Gas Wells - A Case Study

John Fox, CEO, ElectraTherm

ElectraTherm's Heat to Power Generator

Based on the Organic Rankine Cycle

Exploits low grade waste heat:

- Produces 480V, 3phase, 50 or 60Hz power
- Modular and Commercially Mobile:

Weight: \sim 7,000 lbs.

Dimensions: 78 x 96 x 89 inches

Patented technologies enable:

- Low maintenance
- No oil pump, no oil changes, no gearbox
- Off the shelf components & simple but robust design

How It Works

Captures Btu content from hot water to drive the hot side. Employs condensing water or direct-dry-cooler to create the delta-T that results in fuel-free, emission free electricity.

Commercialized Product Ready to Ship

Building on five years of comprehensive product development

- 13 installed units
- Achieved 10,000+ hrs runtime in the field; 14,000 hrs including test cell
- Monitoring fleet performance + R&D testing
- Optimized design turn complete
- Building a backlog through dealer network

IP, Advantages and Working Parameters

Patented ORC Technology

2 core patents issued and licensed

Robust, Proven Hardware

Patented Expander Rotor Profile:

- Allows "wet" operation
- Rotates at 4,200rpm
- Variable output range

Accepts a range of input parameters...

160gpm @ 190-240°F on the hot side 200gpm @ 40-100°F for condensing

...to produce a range of output 30-65kW

Commissioned Units & Target Markets

Co-Produced Water – Oil & Gas

Biomass

Solar Thermal

Biomass in United Kingdom

IC Engine in Texas

Industrial Boiler in Michigan

ElectraTherm awarded \$982,000 from the U.S. Department of Energy (DOE).

Small-scale power generation from co-produced geothermal fluids

The Opportunity

Co-Produced Water from Existing Wells

823,000 oil & gas wells in the U.S. 3 million GPM of hot water in top 8 states 3GW power at 212°F

Sources: The Future of Geothermal Energy – 2006 MIT Report U.S. Energy Information Administration - 2008

2,000 – 4,000 BPD = 30 - 65 kW Green Machine ET's Green Machine is the right size

©ElectraTherm, Inc. 2010

The Challenges

- Small producing wells low hot water flows
- "Hot" wells not so hot
- Not Applicable to large scale power production
 - Need for aggregation of wells for larger plants
- Difficulties/expense of onsite construction in remote locations
- Operating Personnel
- Service support
- Not primary task of O&G producers
- Economics

Co-Produced Water – A Case Study

"Electrical Power Generation from Produced Water: Field Demonstration of Ways to Reduce Operating Costs of Small Producers"

Denbury site (Summerland #22 Soso, Mississippi) was identified in 2008 as a suitable candidate for a Green Machine. Funding was secured from the Research Partnership to Secure Energy for America (RPSEA) under the Small Producer Program.

Co-Produced Water – A Case Study

- Well produces at 9,500 ft. under geo-pressure.
- The well produces 100 BOPD and 4000 BWPD (98% water).
- Surface flowing temperature at 200°F.
- Displacing \$.098 power vs. selling at \$.044
- The well is not part of a CO2 flood.
- Six month field trial demonstration

Step by Step through the Process

ElectraTherm mounted a Green Machine to a trailer in our manufacturing facility, with the dry cooler, hot water bypass and electrical controls installed. The goal was to have a plug and play installation upon site arrival.

Step by Step through the Process

Truck arrives on site in Mississippi at 9 a.m. on Tuesday May 24th.

Mechanical installation begins.

ElectraTherm's Dealer, Gulf Coast Green Energy led the installation efforts onsite. Denbury very supportive.

Tuesday, May 24

Knockout tank plumbing (supply) being installed

Tuesday, May 24

Mechanical installation completed at 3 p.m. Tuesday.

Wednesday, May 25

9 a.m. – Electrician arrives onsite to wire up the Green Machine.

2 p.m. – The machine is wired up and running with fans in manual mode.

Thursday, May 26

9 a.m. – Fan controls are finalized and set up to run in automatic mode.

11 a.m. – **Installation complete.** The machine is running in complete auto mode.

Results

Gross Power Output: up to 18kW

Total Installation Time: 50 hrs

Total Run Hours: ~100

Thermal Heat Input: 500kWt

Hot Water Input Range: 200°F

Hot Water Flow: 120 GPM

Ambient Temp Range: 60-105°F

"This Green Machine was designed on a truck bed for a simple plug-and-play upon arrival at the site. The truck arrived at 9 a.m. on Tuesday and the machine was running in auto mode by Thursday at 11 a.m."

- Dave Mendershausen, Field Engineer, ElectraTherm

Reality of Denbury Site Conditions

Estimated Air Cooled Annual Output for Denbury Project

Temperature Range [°F (°C)]

*Please note: This chart is only an estimate based on customer supplied information and past average weather data

Ambient Weather Temperature: 64.3 F (18.0C)

Hot Water Temperature: 200 F (93C)

Available Heat: 500 kW 90% Annual Runtime

Lessons Learned to Date

- 200F + high ambients = low delta T = derate
- Condenser is undersized (concurrent testing at ET shows ~40% derate)
- Flow is sub-optimal (25% below)
- Mobility and small scale adds value
- 50 hour install on #1 could be cut in half
- AT&T set-up vs. Verizon and easy corrective action
- New programming for ambient temp. limiting start ups above 85F – Auto shut down at 95F
 - New PLC and modem shipped and loaded by Denbury personnel

Estimated Air Cooled Annual Output for Wolf Point, Montana

Temperature Range [°F (°C)]

*Please note: This chart is only an estimate based on customer supplied information and past average weather data

Average Ambient Air Temperature: 39.0 F (3.9C)

Hot Water Temperature: 240 F (116C)

Available Heat: 800 kW 90% Annual Runtime

Example Site #2

Estimated Air Cooled Annual Output for Tulsa, Oklahoma

Temperature Range [°F (°C)]

*Please note: This chart is only an estimate based on customer supplied information and past average weather data

Average Air Temperature: 60.7 F (16.0C) Hot Water Temperature: 240 F (116C)

Available Heat: 800 kW 90% Annual Runtime

Estimated Air Cooled Annual Output for Laredo, Texas

Temperature Range [°F (°C)]

*Please note: This chart is only an estimate based on customer supplied information and past average weather data

Average Air Temperature: 77.3 F (25.2C)

Hot Water Temperature: 240 F (116C)

Available Heat: 800 kW 90% Annual Runtime

The Challenges

• Low hot water flows (160gpm optimal)

- "Hot" wells not so hot (200F good/220F better/240F best)

Not Applicable to large scale power production

- <u>NO</u> Need for aggregation of wells
- Difficulties/expense of onsite construction in remote locations

• Operating Personnel (not required - operation controlled from Reno)

Service support

Not primary task of O&G producers

• **Economics** (30% ITC + 10 cent+ power = 3-4 year payback)

In Summary

- ElectraTherm targets existing sources of waste heat to convert to electricity via an Organic Rankine Cycle (ORC).
- Our applicability to the Oil & Gas industry is existing small-scale power generation from co-produced water/rejected heat from gas compression/amine processing plants/etc.
- First successful plug and play install in Mississippi, with more projects and field trial learning planned.
- 823,000 Oil & Gas wells equals waste heat resources available today. No drilling, no risks. Wells are characterized. There are up to 3 GW of potential power currently waiting to be tapped.
- Come and visit the GCGE booth to learn more.

ElectraTherm, Inc.

John Fox, CEO ifox@electratherm.com 775.398.4680

THE WALL STREET JOURNAL International Innovation Award

Energy 2009

Popular Science Best of 2008 Green Technology

Geothermal Energy Association Best of Show; Best Scientific Paper 2007

NCET 2009 Green Company of the Year