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The design of a deep borehole heat exchanger has already been implemented and tested several 
times, with different concepts of realization1,2,3. In our case, a depleted hydrocarbon well (Prottes 
T11) has been redesigned to a deep borehole heat exchanger with two coaxial tubings, circulating 
a heat transport medium in the annulus without establishing a mass transport to the surrounding 
formation. In populated regions, the redesign of depleted hydrocarbon wells to borehole heat 
exchanger is an attractive option to generate base-load heat. Important research topics are:

- investigation of critical design parameter of borehole heat exchanger systems which previously 
were designed as hydrocarbon well
- investigation of insulation methods (ease of well completion)
- investigation of instationary demand (heat reflux to the well)

The application of different insulation methods and alteration of tubing systems is investigated in a 
100kW borehole heat exchanger facility in combination with the software Geothermal Planning 
Tool for depleted oil and gas wells.

In order to get a preview of the operation and design of a depleted hydrcarbon well, a simulation 
and planning model has been developped, called Geothermal Planning Tool4. This tool allows to 
categorize depleted wells and variate important paremters of the borehole heat exchanger:

- design of tubing
- design of insulation
- operation parametes (massflow, expected injection temperature)
- operability (direct thermal utilization or heat pumps)
- properties of heat transport medium
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At present, all results of the simulations have led to the construction of the 100 kW Borehole Heat 
Exchanger. Subsurface installations have been completed, thermal conductivity tests are held in 
order to calibrate the geothermal planning software.
After completing the testing period, the borehole heat exchanger will deliver heat to a near sports 
centre. 

After completing the geothermal planning tool, it is considered that further liquidated hydrocarbon 
wells well be reopened for geothermal purposes.
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Logs:
Heat flow density 
(a): 65,85 mW/m²

Heat flow density 
(b): 70,73 mW/m²
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Parameter:
Mass flow = 2kg/s
Injection temperature = 303K
Production temperature = 316K
Insulation typ Nitrogen Gas
Insulation = 0,17 W/mK
cP cement ~ 2kJ/kgK
cP rocks ~ 2kJ/kgK 
Heat medium = 3,93kJ/kgK
Casing 7’’
Outer Tubing 4 ½’’
Inner Tubing 2 3/8’’
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Using the geothermal planning tool, different scenarios can be investigated. Main simulation 
parameters are variation in mass flow, heat medium, injection temperature and insulation 
parameters, glass-fibre materials have been neglected. 

4. Measured Performance 

Scenario1:
T_injection: 303K
Insulation λ = 0,17W/mK
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To verify software simulation assumptions a field test has to be covered out. Measured results 
of the first measurement period correspond to numerical models:

Conventional heating systems do not operate at these temperature levels. For this reason, an 
heat-pump energy cascade will be used to increase the overall power output. Upcoming 
geothermal wells have to provide higher diameters and vertical depths to reach heating values 
of low-temperature heating systems.
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Scenario2:
T_injection: 288K
Insulation λ = 0,17W/mK
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