

Testing of ORMAT Technology's Low-Temperature Geothermal Application

Lyle A. Johnson, PE, RMOTC, U.S. DOE

Project Goals

Validate the use of a binary geothermal power generation system that uses hot produced oilfield water to produce electricity.

Test the system for a minimum of 1 year

Provide a technical and economic analysis of the process

Testing partner: ORMAT Nevada, Inc.

Water Treatment Pond

Projected Generator Performance

Flow Rate:	40,000 bpd (6,358 m ³ /d)
Inlet Temperature:	170°F (77°C)
Outlet Temperature:	152°F (67°C)
Ambient Temperature:	50°F (10°C)
Generator Gross Power:	180 kW
Net Power Output:	132 kW

Unit designed and built by Ormat Systems Ltd, Yavne, Israel

Completed Unit

Geothermal Energy Utilization Associated with Oil and Gas Development SMU, Dallas, Texas

Initial Operational Trends

Daily Power Fluctuation

Geothermal Energy Utilization Associated with Oil and Gas
Development

Past Operational Summary

On Line Total, Total (Actual)	days	161 (151)
Inlet Brine Temperature	°F	195-198
	°C	90-92
Inlet Brine Volume	Barrels	3,047,370
	m^3	484,493
Net Power Produced	kilowatt hour	586,574
Overall		
On line percentage	%	91
Average net power	kilowatt	159
Overall w/o Field Downtime		
On line percentage	%	97
Average net power	kilowatt	171
Avg. Net Power Jan-Feb 2009	kilowatt	200

Geothermal Energy Utilization Associated with Oil and Gas Development SMU, Dallas, Texas

System Modifications

- Changed system control to a source control loop with an additional control valve
- Installed vapor bypass line around turbine to ease unit starting when hot
- Installed a vibration monitoring system on generator
- Heat traced air lines and all oil lines to prevent line plugging and oil thickening,
- Reduce air cooling capacity in winter
- Upgraded electrical supply and the ESPs in the production wells.

Present Operational Trends

Present Program

Through a collaborative program with the U.S. DOE's Geothermal Technologies Program, RMOTC's infrastructure is being increased to permit:

- Continue operation of the existing 250kW unit (ORMAT) for a total of 3 years to look at long term operability issues
- Install a water cooled unit (UTC 280) with associated cooling tower and operate for 3 years to look at long term operability issues
- Provide a testing facility for smaller scale prototype power production systems requiring either air or water cooling

Also planning infrastructure to provide EGS testing facilities

