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Global Heat Flow

Average solar flux at TOA: 1365 W m~2

Average solar flux at the surface: 400 W m

Global heat flow from Earth’s interior: 87 mW m
Total surface heat flux from Earth’s interior: 44.2 TW

83% of present surface heat flow is due to radioactive
decay of U, Th, and K

Why is this important?
Knowing heat flow enables estimation of
subsurface temperature



The global heat flow database of the IHFC contains > 22,000 observations.
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Global heat flow map by Pollack and Chapman (1984)

Heat Flow




More than 2000 heat flow observations
in the United States

* 80 percent are in the western third of the US

e 35 percent of observations in the eastern US are in
Lake Superior

 Heat flow interpretations could be greatly improved
with more data






Subsurface Temperatures can be calculated if heat
flow and thermal conductivity are known

Fourier’s law of Heat conduction

) N
Assuming we know heat flow, qZI
temperature at depth “z” may T — E —_—
be calculated by y4 A
1=1 i
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Transient Signals

in Continental Heat Flow

* Ground water flow: + or -

* Ground cover change: + or -
* Climate change: + or —

* Characteristic

thermal length
1y 10y 100 y 1000y |10,000y
a=1x10°%m?2s1
13 m 42 m 131 m 415 m 1,310 m
1y 10y 100 y 1000y |10,000y
a=0.44 x10° m2s1?
9m 28 m 87 m 275 m 868 m




K and K/km
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W/m/K & porosity

The normal temperature vs. depth profile in
a thick clastic sedimentary section has a
convex curvature due to the increase in
thermal conductivity with depth caused by
compaction which reduces porosity.

Porosity varies with depth as
D=0 e~z

C is a constant and z is depth

Thermal conductivity, K, varies
with porosity and as a function
of the conductivity of the solid
rock and water as K = Krl-®Kw®

If heat flow is constant, the temperature at
depth is calculated as

T =T, + 2z, where I, = q/K.

2.00E+00
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Empirical evidence for large magnitude postglacial

warming

T-z measurements in parts of Europe and North America show a

systematic increase in heat flow with depth.
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It is essential to obtain
accurate temperature
measurements in deep
wells that are at
thermal equilibrium.
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Modeling heat flow as a function of crustal radioactivity
The purple dashed line is from the Geothermal Map of NA
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16

km

Radioactive heat generation model fit to observed heat flow
Units are pyW m-3

Heat generation needed to match heat flow is extraordinary,
and would have been previously recognized due to its effect
on other crust and basin properties.

200 km
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A better candidate for heat flow complexity is fluid flow

Introduction
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Source: Penner, Lyndon, Evidence Linking Surface Lineaments, Deep-seated Faults, and Fracture-controlled Fluid
Movement in the Williston Basin, 14t Williston Basin Petroleum Conference and Product Expo, May 2006, Minot, ND




Seismic reflection indicates numerous fractures that could facilitate fluid flow

Brockton-Froid Fault Zone
Seismic Section
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Source: Penner, Lyndon, Evidence Linking Surface Lineaments, Deep-seated Faults, and Fracture-controlled Fluid
Movement in the Williston Basin, 14t Williston Basin Petroleum Conference and Product Expo, May 2006, Minot, ND



Evidence of movement of deep fluids is found in saline seeps

Groundwater Exploration

Saline groundwater
discharge along an
airphoto lineament

SE Alberta

Source: Penner, Lyndon, Evidence Linking Surface Lineaments, Deep-seated Faults, and Fracture-controlled Fluid
Movement in the Williston Basin, 14t Williston Basin Petroleum Conference and Product Expo, May 2006, Minot, ND




Bouguer gravity anomaly map of parts of MB and SK
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Most of the complexities in heat flow variability in the
sedlmentary sections may be due to fluid flow.
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Resource Estimates

* US Geological Survey
— Circular 726 (1975)
— Circular 790 (1979)
— Circular 892 (1983)
 DOE - State Coupled Program
— Geothermal resource maps and reports



Resource estimation
Q= pC VAT

p is the rock density

C, is the heat capacity

V' is the volume of rock to be cooled

AT is the temperature difference between the geothermal
fluid and temperature exiting the heat exchanger.



What we knew

High-temperature convection systems in the western
U.S. contain 371 EJ (Renner, White, and Williams, USGS
Cir. 726, 1975).

Intermediate temperature systems, which exist

primarily in the western U.S., contain 42 £13 EJ (Brook
et al., USGS Cir. 790, 1978).

The accessible low-temperature resource base in the

central United States contains 27,000 EJ (Sorey et al.,
USGS Cir. 893, 1983).

Undiscovered low temperature resources contain an
additional 7,200 EJ (Sorey et al., USGS Cir. 893, 1983).



What has changed

e More and better data on heat flow and
subsurface temperatures

* Technology advances
* Global energy economics



Low-to-intermediate temperature
resources were underestimated

e USGS Circular 892: The GRA considered only one or
two potential geothermal aquifers within well-
known sedimentary basins.

e Large basins such as the Williston Basin, Denver
Basin, Powder River Basin, Anadarko Basin, and the
US Gulf Coast region contain more than a dozen
potential geothermal aquifers having temperatures
greater than 100 °C.



How large is the resource?

* The geothermal energy potential of the hot waters in
sedimentary basins in the US is a huge resource that
could have a significant impact on the nation’s
energy future. The 2007 MIT report estimated the
resource at approximately 100,000 EJ, but that
estimate was based on only one-fourth of the
existing water bearing sedimentary formations

e Using all potential geothermal aquifers in the
Williston Basin in North Dakota and Montana, we
estimate that the resource is approximately 31,800
Exaloules or 8.6 GW



Mid Continent Geothemal

North Dakota & Montana
Eastern Colorado

South Dakota

Nebraska

Kansas

31,800 E.
2,640 E.
5,950 E.
3,720 E.
4,980 E.




Estimated U.S. geothermal resource base to

10 km depth by category

Category of Resource

Thermal Energy, in
Exajoules (1EJ = 101
J)

Reference

* Excludes Yellowstone National

Park and Hawaii
*% |

Conduction-dominated
EGS

Sedimentary rock MIT - 2007
formations 100,000 (400,000)
Crystalline basement MIT - 2007

rock formations 13,300,000

Supercritical Volcanic USGS Circular 790

EGS” 74,100

Hydrothermal USGS Circulars 726
2,400 — 9,600 and 790

Coproduced fluids 0.0944 - 0.4510 (x 20) | McKenna, et al. (2005)

Geopressured systems

v7"1l\’/I9I' 'RQngrt Janubrvoz 2007,

USGS Circulars 726
and 790




Refining the estimate

 Major formations
— Thermal conductivity estimated by lithology
— Porosity estimated by depth of burial

e All formations
— Thermal conductivity estimated by lithology
— Porosity estimated by depth of burial

e All formations
— Thermal conductivity measured

— Porosity measured
— Permeability measured



Williston Basin 1984

Formation Depth Thickenss A Temperature I
Surface meters meters W/m/K °C °C/km
0 0 6

Brule 581 581 1.7 23 30
Pierre 1608 1027 1.2 76 52
Inyan Kara 1744 136 1.6 82 43
Swift 2089 345 1.8 96 39
Spearfish 2383 294 3.1 102 23
Otter 2519 136 2.8 106 25
Mission Canyon 3135 616 2.5 123 28
Lodgepole 3235 100 1.2 129 58
Three Forks 3322 87 3 131 23
Duperow 3536 214 3 136 23
Dawsonbay 3620 84 3 138 23
Winnepegosis 3700 80 3 140 23
Red River 4027 327 3.5 146 20
Deadwood 4311 284 3 153 23



System Rock Units

Quaternary  Cole harbor +

Tertiary White River

Golden Valley
Fort Union

Litholog
Clay, silt, sand,
gravel

Siltstone, clay, sand
Clay, siltstone,
lignite

Silt, clay, sand



System Rock Units Litholog

Jurassic Morrison Shale, siltstone
Swift Shale

Rierdon Shale
Limestone, anhydrite,
Piper shale

Triassic Spearfish Siltstone, shale
Minnekah
ta Limestone

Permian Opeche Shale; dolomitic and silty
Broom

Creek Sandstone, dolomite
Amsden Dolomite, sandstone

Pennsylvanian Tyler Shale, limestone
Otter Shale"
Kibbey Sandstone, limestone

Mississippian Madison Limestone

Thickness | Dep

80
150
30

190
225

12
120

100
35

80
60
75

600

1722
1827
1848

1981
2139

2147
2231

2301
2325

2381
2423
2476

2896

1.3
1.2
1.2

1.5
1.3

3.1
2.7

3.1
3.3

1.4
1.2
1.4

3.1

92
97
98

104
111

111
113

114
115

116
117
120

138



System Rock Units

Max.
Lithology Thickness| Depth Conductivity

°C

INCHELG

Silurian Stonewall
Stony
Mountain

OrdovicianRed River

Winnipeg
Group

Cambrian Deadwood

Dolomite, limestone 335 3669
Dolomite, limestone™ 35 3694

Dolomite, limestone 60 3736
Limestone, dolomite 215 3886

Siltstone, sandstone, shale 125 3974
Limestone, sandstone,
shale 300 4184
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TUNING ADJUSTMENTS INSIDE

ATE TEMPERATURE
"
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HOT DRY ROCKS
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Winnipeg Formation

Total Depth and Bottom Hole Temperature
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Ordovician Formation

Total Depth and Bottom Hole Temperature
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Devonian Formation

Total Depth and Bottom Hole Temperature
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Madison Formation

Total Depth and Bottom Hole Temperature
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Related Links The ND Petroleum Council proudly announces its new Royalty Owner Information Center!
FAQ [ Web Help
Contact Us The Oil and Gas Division regulates the drilling and production of oil and gas Phone: (701) 328-8020
m North Dakota. Our mission is to encourage and promote the development, Fax: (701) 328-8022
production, and utilization of oil and gas mn the state m such a manner as will Mail:
prevent waste, maximize economic recovery, and fully protect the correlative NDIC Oil and Gas Division

600 East Boulevard Ave Dept 405
Bismarck, ND 58505-0840
General Shipping:
NDIC Ol and Gas Division
1016 East Calgary Ave
Bismarck, ND 58503-5512
Core and Samples Shipping:
D Geological Survey Core Library
Campus Eoad and Cornell
Grand Forles, WD 58202

rights of all owners to the end that the landowners, the royalty owners, the
producers, and the general public realize the greatest possible good from
these vital natural resources.
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BARRELS OF BARRELS OF MAX.

FORMATION OlIL WATER TEMPC
Spearfish 582,601 320,626 120+
Spearfish/M adison/Charles 52,923,055 81,138,008 120+
Tyler 17,279,723 9,616,114 120+
M adison 1,003,859, 751 2,266,631,018 132
Bakken (Sanish) 43,079,616 4,876,685 135+
Birdbear (Nisku) 16,532,269 19,875,577 135+
Duperow 48,360,560 51,290,164 135+
Souris River 58,090 61,886 140+
Dawson Bay 3,985,365 1,191,086 145+
Winnipegosis 8,853,724 6,663,034 145+
Interlake 62,397,829 140,808,361 145+
Stonewall 14,699,878 5,134,309 145+
Winnipegosis 8,853,724 6,663,034 145+
Red River 162,448,927 162,167,866 150+
Winnipeg/Deadwood 168,170 256,474 150+
Total 1,602,219,737 2,927,676,055




Electric Power Production from Co-
produced Low-temperature

Geothermal Resources

University of North Dakota
Berrendo Geothermal Energy, LLC
Encore Acquistions, Inc.

North Dakota Geological Survey

This project will be developed in one of the 102
unitized fields in the Williston Basin.

Co-produced fluids from the Lodgepole Fm. A
unit of the Madison, are the resource. Fluid
temperatures are in excess of 120 C.



Electric Power Production from Low-
temperature Geothermal Resources

University of North Dakota
Berrendo Geothermal Energy, LLC
Continental Resources, Inc.

North Dakota Geological Survey

This project will be developed in the Cedar Creek
Field in Williston Basin.

Water from a water-flood secondary recovery
project at a a volume of 1500 gpm at
temperature of 99 Cis produced from the
Lodgepole Fm.
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Binary Turbine Development

The key requirement is AT

ORC systems can use temperatures below the
boiling point of water

Sedimentary basins in cold climates

The 150 °C to 90 °C resource can provide
electrical power!
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exponential model for the vertical

distribution of crustal radioactivity.

Temperature vs. depth plots based on the
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