

Seismic Processing for Fracture Prediction

*Galen Treadgold Charles Sicking Victoria Sublette Gary Hoover

2008 SMU Geothermal Energy Utilization Assoc. with O&G

Curvature and Coherence

Outline

- Seismic and Fractures
- Velocity and Anisotropy
- Azimuthal Analysis
 - -Methods
 - –Imaging Results

Azimuthal Velocity Variations

Velocity and Amplitude varies by Azimuth in the presence of Open Fractures

Map View

Seismic Based Fracture Prediction Technologies

- Multi-Component Shear Wave Splitting
- Azimuthal Analysis TIME
 - Pre-Migration Azimuthal Analysis
 - Migration based Azimuthal <u>Velocity</u> Analysis
 - Option 1 Sectored Azimuthal Migrations
 - Suffers from poor sampling
 - Option 2 Isotropic Migration into azimuth and offset bins
 - Option 3 Azimuthal Migration
 - Migration based Azimuthal AVO
- Azimuthal Analysis DEPTH
- Post-Stack:
 - Curvature Analysis
 - Coherence Analysis
 - Inversion Amplitude and Velocity Information

Best Seismic Technology for Fracture Detection???

Robert Taylor - Halliburt

Bakken Fractures

-9860

Depends on: Acquisition.... Target Lithology Sandstones.... Carbonates.... Shales.... Structural Setting.... Nature of Fracturing

Goals for Azimuthal Analysis

• Better Image

Reservoir Information

Outline

- Seismic and Fractures
- Velocity and Anisotropy
- Azimuthal Analysis

 Methods
 Imaging Results

 Azimuthal AVO

Some Definitions

VTI - Vertical Transverse Isotropy

Offset, Time and Dip Dependent Layer Anisotropy

Migrated Gather Sorted by Offset

• HTI – Horizontal Transverse Isotropy

Unmigrated Gather Sorted by Azimuth

360

Bainter let 42 2026049 les -400 7546069 clew 7404.0

Groomlag 10000000 40092

Eno oli (0757 0

What Azimuth?

Velocities

- NMO Normal Move-Out
- Ray Tracing Higher Order NMO
- VTI Higher Order NMO

Azimuthal

Azimuth

Why Azimuthal Processing

Gather Sorted by Azimuth

Robert Taylor - Halliburton

Outline

- Seismic and Fractures
- Velocity and Anisotropy
- Azimuthal Analysis
 - -Methods
 - -Imaging Results

No Migration

Migration

Azimuthal Migrations

From Walt Lynn, Lynn Inc. SEG/San Antonio 2007 Annual Meeting

12400

Data Values at 22.5, 67.5, 112.5 and 157.5 deg.

180

Imaging into Azimuth and Offset Space

1 Migrations

12500

12400

12300

Elliptical Migrations

For each target location Changing azimuths – 0-180 Constant amount of azimuthal anisotropy 12 mig at 1 %

80 105 120 135 150 8 AS

465

1-5%

12 mig at 2% 12 mig at 3% 12 mig at 4% 12 mig at 5%

Elliptical Migrations

For each target location Changing azimuths – 0-180 Constant amount of azimuthal anisotropy 12 mig at 1 %

90 105 120 135 150 2A2

465

1-5%

12 mig at 2% 12 mig at 3% 12 mig at 4% 12 mig at 5%

Far Offsets Azimuth Gathers – Isotropic NMO

Far Offsets Azimuth Gathers – Azimuthal NMO

Quality Check on Derived Parameters

Far Offsets Super Bin **Azimuth (Degrees) Azimuth (Degrees)** 75 135 195 255 315 75 135 195 255 315 15 15 Gather A Gather B ĽĽ 555665555 **Gather C** Gather D 11

Far Stack Comparison Isotropic Imaging versus Azimuthal Imaging

Complex Faulting Carbonate Reservoir

Azimuthal Velocity Anomaly Volume

Curvature

4 mi X 4 mi cube from larger Survey

1

Dominant Azimuth Direction

Low Velocity

Complex Faulting Carbonate Reservoir

Azimuthal Results: Minimal Imaging Impact Azimuthal Anomalies agree with some low velocity zones Azimuth Direction showed agreement with regional stress field Better anomalies don't correlate with Curvature results

Azimuthal Processing - Conclusions

- Imaging Improvement ?
 - No difference → Huge Difference
- Fracture and Stress Field Prediction
 - Barnett, Marcellus, Bakken, Woodford, Fayetteville, Haynesville
 - Fractured Carbonates and Sandstones
- Future
 - Integration of Azimuthal Cubes into Reservoir Simulation
 - Simultaneous Inversion for VTI and HTI
 - Depth Migration and Azimuthal Analysis

Outline

- Seismic and Fractures
- Velocity and Anisotropy
- Azimuthal Analysis

 Methods
 Imaging Results
- Azimuthal AVO

Seismic Based Fracture Prediction Technologies

- Multi-Component Shear Wave Splitting
- Azimuthal Analysis
 - Pre-Migration Azimuthal Analysis
 - Migration based Azimuthal <u>Velocity</u> Analysis
 - Option 1 Sectored Azimuthal Migrations
 - Suffers from poor sampling
 - Option 2 Isotropic Migration into azimuth and offset bins
 - Option 3 Azimuthal Migration
 - Migration based Azimuthal AVO

• Post-Stack:

- Curvature Analysis
- Coherence Analysis
- Inversion Amplitude and Velocity Information

Azimuthal AVO

Incident Angle

N30E

Parallel to Fractures

N120E

Across Fractures

AVOA requires azimuth sectoring

180

Input Gathers

All Azimuths In Gather CDP Gathers are Very Noisy – Sorting into Azimuth Ranges Makes the Analysis Very Difficult

Input Gathers for Azimuth Sort Ranges

Azimuthally Imaged Gathers

All Azimuths Imaged

Pre-Stack Azimuthal Imaging

- Improves the Signal to Noise by a Factor of 10 or more
- Yields A Very Strong Signal for Velocity and AVO Analysis

Imaged Gathers – Az (Degrees)

30	<mark>60</mark>	90	120	150	180
					BREEK
				I BERTHER	(Arthoniety)
				I THE REAL PROPERTY AND IN THE REAL PROPERTY AND INTERPOPERTY AND IN	
		REPRESENT			

In Line With Fracture Direction Cross Fracture Direction

Fracture Sets – Open Direction

• The Fractures Will Normally be Open in Only One of The Directions

PreStack Fracture Map – All Azimuth AVO Analysis

AVO Analysis

PreStack Fracture Map – 30 Degree Azimuth AVO Analysis

Direction Vectors From Azimuthal Analysis Correspond to Directional AVO

PreStack Fracture Map – 150 Degree Azimuth AVO Analysis

Direction Vectors From Azimuthal Analysis Correspond to Directional AVO

