Enhanced Geothermal Systems (EGS): Comparing Water and CO₂ as Heat Transmission Fluids

Karsten Pruess

Earth Sciences Division
Lawrence Berkeley National Laboratory

U.S. Geothermal Resources are Huge

Heat content in subsurface rocks to 6 km depth, relative to ambient temperature (Dave Blackwell, SMU)

• T > 200 °C: 296,000 EJ*

• T > 125 °C: 2,410,000 EJ

(* EJ = ExaJoule; 1 EJ = 10^{18} J)

(Map c/o INL Geothermal Program)

Primary energy consumption in U.S. (2004)

- total primary energy consumption: ≈ 100 EJ
- total U.S. geothermal energy use: 0.31 EJ (≈ 0.3 % of primary)

Why is Geothermal Energy Contribution so Small?

- Geothermal energy extraction is currently limited to hydrothermal systems (the "low-hanging fruit").
- There is a vast store of geothermal heat that is difficult to recover (hot rocks lacking fluid and permeability).
- How can the essentially inexhaustible heat in deep geologic formations be tapped and transferred to the land surface for human use?

Source: Geothermal Education Office (GEO) http://www.geothermal.marin.org/

Enhanced Geothermal Systems (EGS)

- Artificially create permeability through hydraulic and chemical stimulation.
- Transfer heat to the land surface by circulating water through a system of injection and production boreholes.
- Experimental projects in U.S., U.K., France, Japan, Australia, Sweden, Switzerland, Germany.
- EGS is currently not economically viable; the chief obstacles are:
 - dissolution and precipitation of rock minerals, that may cause anything from short-circuiting flows to formation plugging
 - large "parasitic" power requirements for keeping water circulating
 - water losses from the circulation system
 - inadequate reservoir size heat transfer limitations
 - \triangleright high cost of deep boreholes ($\approx 5 \text{ km}$)

How about using CO₂ as Heat Transmission Fluid?

property	CO_2	water
chemistry	poor solvent for rock minerals	powerful solvent for rock minerals: lots of potential for dissolution and precipitation
fluid circulation in wellbores	highly compressible and larger expansivity ==> more buoyancy, lower parasitic power consumption	low compressibility, modest expansivity ==> less buoyancy
ease of flow in reservoir	lower viscosity, lower density	higher viscosity, higher density
heat transmission	smaller specific heat	larger specific heat
fluid losses	earn credits for storing greenhouse gases	costly

Favorable properties are shown **bold-faced**.

EGS-CO₂ Issues

- Effectiveness of CO₂ as a heat transfer medium.
- Other processes induced by CO₂, that may affect feasibility and sustainability of EGS with CO₂ (chemical reactions, corrosion).
- Can we make an EGS-CO₂ reservoir? (Circulate CO₂ to remove the water.)
- Energy conversion system (binary plant w/ heat exchanger; directly using CO₂ on the turbines)
- Economics.
- Fluid lost = fluid stored?

General Makeup of a CO₂-Based EGS Reservoir

Zone 1

Central zone and core of EGS system, where most of the fluid circulation and heat extraction is taking place. This zone contains supercritical CO₂; all water has been removed by dissolution into the flowing CO₂.

Zone 2

An intermediate region with weaker fluid circulation and heat extraction, which contains a two-phase mixture of CO₂ and water.

Zone 3

The outer region affected by EGS activities. The fluid is a single aqueous phase with dissolved CO₂.

(after Christian Fouillac et al., *Third Annual Conference on Carbon Capture and Sequestration*, Alexandria, VA, May 3-6, 2004)

Comparing Operating Fluids for EGS:

> monitor mass flow, heat extraction rates

Reference Case

$$T_{res} = 200 \, ^{\circ}C, \, P_{res} = 500 \, bar, \, T_{inj} = 20 \, ^{\circ}C$$

300

Ratio of rates, CO2: H2O 250 Mass flow rate (kg/s) 4.5 $\Delta M!$ 200 150 100 50 3.5 35 10 15 20 25 30 5 Time (years)

5.0

heat extraction

mass flow

Simulation Results for Different Reservoir Pressures at T = 200 °C

heat extraction

mass flow

Fluid Mobility

(density:viscosity; units of 10⁶ s/m²)

 CO_2

water

Injecting CO₂ into an Aqueous System

- At early time (≤ 0.1 year), produce single-phase water
- This is followed by a two-phase water-CO₂ mixture (0.1 2.5 yr)
- Total production rate during two-phase period is low due to phase interference
- Subsequently produce a single supercritical CO₂-rich phase with dissolved water

Rate and Composition of Produced CO₂

- Water is removed from fracture network fairly rapidly (about 4.4 % remaining after 5 years)
- The low-permeability rock matrix provides a long-term source of water, with almost half of initial inventory remaining after 36.5 years

Wellbore Flow: CO₂ vs. Water

Pressure difference between production and injection well

 CO_2 : 288.1 - 57.4 = 230.7 bar

water: 118.6 - 57.4 = 61.2 bar

CO₂ generates much larger pressures in production well, facilitating fluid circulation.

CO₂ Storage Capacity

- Need a mass flow of approximately 20 tons of CO₂ per second, per GW electric power capacity.
- Expect a fluid loss rate of order 5%, or 1 ton per second of CO₂ per GW of installed EGS capacity.
- This is equivalent to CO₂ emissions from 3 GW of coal-fired power generation.
- The MIT report (2006) projects 100 GW of EGS electric power by 2050.
- 100 GW of EGS with CO₂ would store 3.2 Gt/yr of CO₂, approximately 40 % of total current U.S. emissions.

The Future of Geothermal Energy Impact of Enhanced Geothermal Systems (EGS) on the United States in the 21st Century

 $ightharpoonup CO_2 lost = CO_2 stored?$

Power Generation from CO₂-Based EGS

- One option is **binary conversion** technology, using similar equipment as water-based systems.
- Alternatively, it may be possible to **directly feed the produced CO₂** to the turbines. This may be possible because supercritical CO₂ without admixed liquid water is not corrosive to metals.
- Direct expansion of CO₂ in the turbines would avoid otherwise inevitable and irreversible heat losses in a heat exchanger.
- However, the produced CO₂ stream will need to be dried before entering the turbines, to avoid condensation of liquid water during decompression and cooling.
- Clarify the relative merits and thermodynamic efficiencies of different options for power generation.
- Need to balance and optimize tradeoffs between power generation and CO₂ storage.

Path Forward*

- Fluid-rock reaction experiments with supercritical CO₂
- Laboratory flow experiments for water-CO₂ mixtures and pure anhydrous CO₂
- Modeling of fluid flow, heat transfer and rock-fluid interactions (chemical/mechanical)
- Design studies for a field pilot test of EGS with CO₂

Concluding Remarks

- Water-based enhanced geothermal systems (EGS) face difficult hurdles to (1) achieve adequate heat extraction rates, and (2) maintain injectivity and heat extraction performance in the face of strong rockfluid interactions.
- CO₂ has attractive properties as a heat transmission fluid for EGS.
 - ➤ **Heat extraction** rates when using CO₂ are estimated to be approximately 50 % larger than for water.
 - \triangleright CO₂ is very favorable in terms of **wellbore hydraulics**.
 - ➤ Unavoidable **fluid losses** are costly for water, but could earn greenhouse gas storage credits when using CO₂.
- The fluid produced from an EGS operated with CO_2 will change from initially water ($\approx 1 \text{ month}$), to a two-phase aqueous- CO_2 mixture (a few years), to $scCO_2$ with dissolved water of order 0.1 wt.-%.
- Use of CO₂ as heat transmission fluid for EGS looks promising and deserves more study (geochemistry/geomechanics!).
- We are aiming to develop the scientific basis for a field demonstration.

Reactivity of Rocks for scCO₂

reactivity low high

Rock type	Characteristics
granite	 generally high in SiO₂, low in carbonates limited surface area and reactivity of mineral grains
sandstone	> may have carbonate cements
graywacke	> relatively low in carbonates
ignimbrite	> welded tuffs, lithophysal cavities
felsite	
non-welded tuff	➤ more reactive➤ zeolitized by water
marine sediments	> can be high in carbonates
basalt	> amorphous, highly reactive