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Abstract

We develop a framework to model the shopping and consumption decisions of

forward-looking consumers. Assuming that the consumer's future utility for each prod-

uct alternative can be characterized by a standard random utility model, we use dy-

namic programming to determine the optimal consumption policy and the maximum

expected value of consuming any n substitutable products selected while shopping (an

n-pack). We propose two models. In the �rst (canonical) model, we assume that an

alternative is consumed on each successive consumption occasion and obtain a closed-

form optimal policy and a closed-form value function. Given a consumer's preferences

for the product alternatives in an assortment, we then show how to identify that con-

sumer's optimal n-pack using a simple swapping algorithm that converges in at most

n swaps. In the second (generalized) model, we introduce an outside option so that a

product alternative need not be consumed on each consumption occasion. We obtain a

closed-form value function for the generalized model and show that its optimal n-pack

is related to that of the canonical model using a special type of majorization. Addi-

tional structural properties and implications of each model are explored, as are other

applications.

1To whom correspondence should be addressed
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1 Introduction

A great deal of research has focused on two key consumer decisions: (1) the shopping,

or purchase, decision which is usually made in store; (2) the consumption decision which is

made later at the time of consumption. For consumer packaged goods, the two decisions are

inextricably linked even though they occur at di�erent times and in di�erent places.

Shopping decisions are made for future consumption, which generally occurs over multi-

ple consumption occasions. On each such occasion, only products selected previously while

shopping are available to be consumed. The shopping decision therefore creates a set of

products for future consumption and so is inherently forward-looking. At the same time, the

shopping decision constrains the product alternatives that are available for future consump-

tion compared to the full assortment in store. Each successive consumption decision may

further constrain the product alternatives available, depending upon how many units of each

product alternative were selected when shopping. If the consumer has only a single unit of

a particular product alternative remaining, then consuming it would preclude choosing that

alternative on all succeeding consumption occasions. Because consumption decisions, like

the shopping decision, a�ect the expected utility of future consumption, these decisions are

also inherently forward-looking.

In this paper, we propose a two stage model of shopping and consumption. In the �rst

stage, the consumer selects a set of n products (n is exogenous), the �n-pack,� to be consumed

over a horizon having multiple future periods (consumption occasions). In the second stage,

the n-pack is iteratively consumed over multiple periods, which we model using a dynamic

programming (DP) model. The n-pack may include m ≤ n product alternatives so multiple

units of each alternative may be selected. If one unit is consumed each period and there is

no outside option, the horizon has n periods. If one unit is consumed each period but there

is an outside option, the horizon can have any number of periods. The primary purpose of

this paper is to investigate and establish the basic analytical properties of the model with

and without an outside option.

The model without an outside option is referred to as the canonical model because its

assumptions mirror those used in the consumer behavior literature for the past 25 years,

beginning with Simonson (1990). While this model introduces analytical complexities ab-

sent from prior work, it yields a closed-form optimal consumption policy and a closed-form

value function for any n-pack. The latter function parsimoniously captures the bene�ts of

diversifying the n-pack versus choosing more units of one's most preferred product alter-

natives (as measured by their expected utilities). Analysis of the canonical model yields

some interesting and important insights. We �nd that the optimal consumption policy does

not require the consumer to select the product that o�ers the highest utility on each con-
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sumption occasion; rather, the optimal policy is about matching products with consumption

occasions. This matching policy depends on the inventory of available product alternatives

and the stochastic (but not the deterministic) component of utility for available product

alternatives. Consumption decisions therefore do not reveal preferences, per se. Moreover,

analysis of our model shows that a consumer's optimal n-pack is also the set of products

most likely to be consumed over n independent consumption occasions had each consumption

choice been made from the full assortment, what Simonson (1990) and Read and Loewen-

stein (1995) refer to as �sequential choice.� Note that sequential choice does not restrict the

alternatives that can be selected on each consumption occasion, whereas choosing from a

previously selected n-pack most certainly does.

The model with an outside option on each consumption occasion is referred to as the

generalized model. To our knowledge, no other study of shopping and consumption has

incorporated an outside option, which e�ectively reduces the rate of consumption, ceteris

paribus. For the generalized model, the value function and the optimal policy are also closed-

form but more complex than in the canonical case. We show that the optimal n-pack in the

generalized case is at least as diversi�ed as the optimal n-pack in the canonical case. This is

made possible by relating the optimal n-pack of the generalized model to the optimal n-pack

of the canonical model using a new, specialized type of majorization. Finally, we show that

the marginal change in the value of an n-pack decreases as the time horizon increases, i.e.,

the value function in the generalized model is �concave� in the number of time periods.

For these models we assume knowledge of the consumer's long-run consumption proba-

bilities for the full assortment of product alternatives in store. This requirement is not as

onerous as it might seem, as few products from the full assortment are typically considered

(Hauser and Wernerfelt 1990, Roberts and Lattin 1991). We also assume that a consumer's

future preferences (utilities) are uncertain and can be described by a standard random utility

framework. This is consistent with the work of Guo (2010) and Walsh (1995).

Applied researchers doing behavioral research could use our model as a rational baseline

for shopping and consumption decisions when investigating variety seeking (e.g., Simonson

1990, Read and Loewenstein 1995) or state dependence (Guo 2010) in observed decisions.

Our closed-form optimal consumption policy would also be useful in structural models of mul-

tiproduct shopping. Because our model permits easy estimation of the consumer's valuation

of any n-pack, applied researchers can use those estimates as inputs for other discrete choice

models that predict n-pack selection from the modeler's perspective (see Guo 2010 for an

example). Indeed, embedding our model within a larger analytical framework�potentially

in an operational setting� o�ers signi�cant application potential.

While this research was not intended to create a decision support tool, manufacturers and
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retailers could bene�t from using our models to develop speci�c n-packs. Most n-packs are

comprised of several units of a single product alternative (e.g., 6-packs of beer or carbonated

beverages); others are comprised of multiple product alternatives from a single manufacturer

(e.g., variety packs of single-serve cereals or yogurts). In either case, the n-pack o�ered may

not be optimal for an individual consumer. Our analysis provides a framework to determine

how individual consumers or consumer segments would value di�erent n-packs. The value

function can be optimized over the space of all possible n-packs to predict the customized

n-pack that a given consumer would choose in the shopping stage. Though this optimization

problem is inherently di�cult to solve using standard optimization software, we develop a

greedy swapping algorithm that computes the optimal n-pack in at most n swaps.

We have proposed our model as an assortment optimization model at the consumer level.

However, it may be applied to other problems. As a case in point, we describe an application

for maximizing auction revenues at the end of the paper. Also, while the current paper

focuses solely on the analytical aspects of our dynamic models, the authors have already

conducted several laboratory experiments to con�rm predictions the canonical model makes

regarding rational consumer behavior. The data collected from these experiments is the basis

for a companion paper covering empirical aspects of our models. Some of the data collected

from these experiments is used in §3.4 and §3.5.

2 Literature Review

Consumer psychologists and economists have long recognized that preference uncertainty

a�ects consumers' product choices (Pessemier 1978, March 1978, Kreps 1979, Kahneman and

Snell 1990). Simonson (1990) was among the �rst consumer psychologists to study the e�ect

of preference uncertainty on shopping decisions, �nding what has come to be known as

the diversi�cation bias (cf. Read and Lowenstein 1995). In a series of three experiments,

Simonson showed that consumers systematically seek more variety (measured by the absolute

number of di�erent product alternatives selected) when choosing an assortment of products

for the future compared to choosing each product sequentially at the time of consumption.

This research stream has generated additional empirical results. For example, Simonson

and Winer (1992) used scanner panel data to show that increasing the size of a retailer's

assortment increases the variety of �avors consumers select. Salisbury and Feinberg (2008)

proposed that diversi�cation may involve a rational response to preference uncertainty, in

addition to �variety-seeking.� Because our model is based exclusively on utility-maximizing

behavior in the presence of preference uncertainty, it provides an appropriate baseline against

which to evaluate variety seeking (or positive state dependence) in consumption decisions.

In an article titled �The Lure of Choice,� Bown, Read and Summers (2003) found that
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people prefer to preserve options for the future, even when doing so leads to less desirable

outcomes. Our canonical model strongly supports this �nding. The experiments reported in

their study involve two-stage choices, where only a single item is chosen in the second stage.

Similar two-stage choice models have been applied to consideration set formation (Hauser

and Wernerfelt 1990, Roberts and Lattin 1991) and to choice among retail assortments

(Kahn and Lehmann 1991). Like the models we propose herein, these two-stage models

specify Gumbel-distributed errors to represent preference uncertainty.

Guo (2010) developed a structural econometric model for consumers' choice of assort-

ments (n-packs). His model allows for consumption �exibility, due to future preference

uncertainty as well as state dependence; our model addresses only the former. Guo esti-

mated his model on scanner panel data for yogurt purchases. Because consumption data

was not available, Guo estimated the consumer's valuation of each assortment (what we

call n-packs) using simulation. This involved simulating error streams for each alternative

over the consumption horizon and assuming the consumer selects the alternative o�ering the

highest utility on each consumption occasion. We note that such a consumption policy is

plausible but not optimal. Guo found that allowing for both future preference uncertainty

and state dependence o�ers better in- and out-of-sample �ts for the scanner panel data than

more restricted nested models. However, his parameter estimates indicate positive state

dependence�this is the opposite of variety-seeking, which is received wisdom in consumer

psychology (Simonson 1990, Read and Loewenstein 1995). Guo also found that consumers

make consistent multi-product purchases; that is, they purchase horizontally-varied sets of

products but purchase similar sets of products over time. In an earlier study, Guo (2006)

determined that consumption �exibility, due to preference uncertainty, also a�ects �rm de-

cisions about product variety and pricing. Using a duopoly model, Guo identi�ed the con-

ditions under which consumers purchase multiple competing products. He found that, if

consumers have relatively homogeneous preferences, �rms can actually make lower pro�ts

by falling into a ��exibility trap� by pricing to attract primary demand.

The work that is closest to ours is due to Walsh (1995). In this paper, the author modeled

consumption decisions for assortments with two product alternatives. Both alternatives'

future utilities are random, and the problem reduces to an equivalent one in which one

alternative has random utility and the other has constant utility (a reduction that only works

for assortments with precisely two alternatives). Assuming that consumers are forward-

looking, Walsh developed dynamic equations that describe optimal consumption behavior

and the associated value function. Although the form of the policy and the value function are

not available in closed-form, Walsh's analysis yielded three interesting �ndings: (i) consumers

may not choose the alternative o�ering the greatest utility on a particular consumption
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occasion; (ii) more inventory of an alternative makes it more likely to be selected; (iii) adding

an additional unit to the assortment causes the utility of that assortment to increase by more

than the expected utility of the item added. Our canonical model generalizes Walsh's �ndings

(and adds some re�nements) while enabling normative predictions for shopping decisions.

Further, our generalized model (including an outside option for consumption) demonstrates

that the canonical model represent a boundary solution. Compared to Walsh's model, ours

(i) apply to n-packs of any size and with any number of product alternatives; (ii) result in a

closed-form value function that can be maximized to determine each consumer's optimal n-

pack; (iii) are based on marginal choice probabilities and so can be customized to individual

consumers and used for decision support. The tradeo� we make is in using the multinomial

logit framework (deterministic utility plus Gumbel-distributed errors) to describe future

utilities; Walsh used a general error distribution. Given the ubiquity of the multinomial

logit in discrete choice and assortment planning models, we feel that this tradeo� is justi�ed.

Another related vein of research involves assortment optimization in the revenue manage-

ment literature. The multinomial logit (MNL) plays a prominent role in this research. One

of the earliest papers in this vein is due to van Ryzin and Mahajan (1999), who used MNL

embedded in the demand model of a newsvendor problem and derived optimal pro�t func-

tions under several reasonable assumptions. The authors showed that the pro�t-maximizing

assortment is some subset of the most popular products (the most popular products have the

highest probability of being selected). The authors used the concept of majorization to derive

su�cient conditions that ensure the pro�ts of one category dominate those of another. In a

subsequent paper, Talluri and van Ryzin (2004) introduced a dynamic model and developed

conditions on the choice probabilities that ensure the optimal assortment is some contiguous

set of the highest fare products (the �nested by fare order� property). They developed nec-

essary and su�cient conditions that once again involve the concept of majorization, and the

MNL choice model was shown to satisfy these conditions. More recently, Rusmevichientong

and Topaloglu (2012) showed that these results remain valid for MNL in the presence of

parameter uncertainty (for the choice probabilities) and a capacity constraint.

In contrast to these papers, our model addresses assortment optimization at the consumer

level and not the retailer level. Moreover, our model does not use MNL choice probabilities

to capture consumer demand, but instead uses the random utility framework of MNL to

capture preference (utility) �uctuations for a given consumer over time. Our model also fo-

cuses on the combination of alternatives and quantities that comprise a consumer's optimal

n-pack. Majorization plays an important role in our work as well, but we do not use it as an

assumption to prove a theoretical result. Rather, we �nd that a stronger form of majoriza-

tion, what we have called �strong majorization,� characterizes the relationship between the
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optimal solutions of our two main models.

3 Expected Utility of an n-Pack: The Canonical Model

3.1 Assumptions

Consistent with the extant literature, we begin by assuming (in this section) that the

consumer selects an alternative from a preselected n-pack on each consumption occasion.

There are M distinct product alternatives available in the product category (the full assort-

ment available in store) although only m alternatives are represented in the n-pack (m ≤ n,

m ≤ M). The utility parameters for each alternative are Ui (i = 1, 2, ...,M). These pa-

rameters could be a function of many things; however, we take them to be �xed for ease of

exposition. On any particular consumption occasion t, the utility that consumer j receives

from a particular alternative i is Uji + εjit where the random errors εjit are assumed to be

independent Gumbel distributed with CDF F (z) = exp(−e−(z−µ)/β). The errors account

for a variety of unmodeled factors that a�ect consumption decisions, and each consumption

occasion t represents a fresh draw for these errors. For example, a consumer might prefer

vegetable soup on most consumption occasions but prefer chicken soup when they are feeling

ill�this would be captured in the error term. Like Walsh (1995) and Guo (2010), we assume

these errors become known to the consumer at the time of consumption but not before.

Given the canonical model's assumption that one unit is consumed per period, we must have

t = 1, 2, . . . , n periods in the consumption horizon.

Without loss of generality, we may assume that the problem has been normalized so that

the errors are standard Gumbel with µ = 0 and β = 1 (observe that Uji + εjit ≥ Ujl + εjlt if

and only if 1
β
Uji+

1
β

(εjit − µ) ≥ 1
β
Ujl+

1
β

(εjlt − µ), but 1
β

(εjit − µ) is standard Gumbel for all

(j, i, t)). The expectation of a standard Gumbel is E(εjit) =
´∞
0
ln(z)e−zdz; this is Euler's

constant and denoted by γ. The expected utility of each product is therefore E(Uji + εjit) =

Uji + γ. Without loss of generality, alternatives are ordered Uj1 ≥ Uj2 ≥ · · · ≥ UjM . In what

follows, we suppress the subscripts on the consumer (j) and the consumption period (t) to

improve readability.

An n-pack of substitutable products can be mathematically represented by a vector of

integer quantities (k1, k2, . . . , kM), ki ∈ N0 = {0, 1, 2, . . .} and
∑

i ki = n. Returning to

the soup example with vegetable in the vector's �rst position and chicken in the second,

the consumer might select the pack (3, 1, 0, . . . , 0) (M − 2 zeros), which means three cans

of vegetable and one can of chicken (n = 4, m = 2). Once an n-pack is selected, we

assume there is no replenishment of inventory by the consumer (Simonson 1990; Read and

Loewenstein 1994; Walsh 1995; Salisbury and Feinberg 2008). The optimal value function,

which is the expected utility received by following an optimal consumption policy, is denoted

7



by V (k1, k2, . . . , kM).

A timeline that illustrates the dynamics for consuming a 3-pack consisting of one unit of

alternative 1, one unit of alternative 2, and one unit of alternative 3 is shown in Figure 1. We

have assumed the consumption sequence is alternative 2 then alternative 3 then alternative

1. In practice, this sequence would be determined by the optimal consumption policy, which

is formally described later in Theorem 1.

Figure 1: Timeline for Consuming the 3-pack (1,1,1)

3.2 Consuming a Given n-Pack: The Recursion Equation

Recall that the consumption stage is the second stage of our two stage model (selec-

tion/purchase is �rst, consumption is second), and this stage will involve dynamic pro-

gramming. Let us �rst consider the simple case for M = 2 product alternatives, labeled

1 and 2 (U1 ≥ U2). The smallest 1-packs for consumption are (1, 0) and (0, 1), and it is

clear V (1, 0) = U1 + γ and V (0, 1) = U2 + γ. Let us suppose that we have calculated

V (·) for all (n-1)-packs having two or fewer product alternatives. Now consider all n-packs

having two or fewer alternatives. The two least diversi�ed n-packs have expected values

V (n, 0) = n× (U1 + γ) and V (0, n) = n× (U2 + γ). For all remaining n-packs (k1, k2) (with

k1 > 0, k2 > 0 and k1 + k2 = n) we must consider both the current consumption utility,

U1+ε1 vs. U2+ε2, and the expected future utility from the remaining items, V (k1 − 1, k2) vs.

V (k1, k2 − 1). This means we would (strictly) prefer alternative 1 on the �rst consumption

occasion if and only if

U1 + ε1 + V (k1 − 1, k2) > U2 + ε2 + V (k1, k2 − 1) ,
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and we would (strictly) prefer alternative 2 if the inequality were reversed. Ties can be

broken arbitrarily. To simplify notation, let us de�ne the constant

a(k1, k2) = U1 − U2 + V (k1 − 1, k2)− V (k1, k2 − 1) , (1)

so that the optimal policy becomes to choose alternative 1 if a(k1, k2) + ε1 > ε2, otherwise

choose alternative 2. Using this optimal policy, we can calculate the expected optimal utility,

V (k1, k2), as

V (k1, k2) =

∞̂

−∞

ε1+a(k1,k2)ˆ

−∞

(U1 + ε1 + V (k1 − 1, k2)) exp
(
−e−ε1 − e−ε2

)
e−ε1−ε2dε2dε1

+

∞̂

−∞

ε2−a(k1,k2)ˆ

−∞

(U2 + ε2 + V (k1, k2 − 1)) exp
(
−e−ε1 − e−ε2

)
e−ε1−ε2dε1dε2

= ln
(
ea(k1,k2) + 1

)
+ U2 + γ + V (k1, k2 − 1) . (2)

Using the recursion in (2), we can determine the value of the n-pack (1, 1). Here, a(1, 1) = 0,

and so

V (1, 1) = U1 + U2 + ln(2) + 2γ.

Continuing to use (2) in this fashion, we obtain the following valuations:

V (2, 1) = 2U1 + U2 + 3γ + ln(3) (a = ln(2))

V (1, 2) = U1 + 2U2 + 3γ + ln(3) (a = −ln(2))

V (3, 1) = 3U1 + U2 + 4γ + ln(4) (a = ln(3)

V (2, 2) = 2U1 + 2U2 + 4γ + ln(2) + ln(3) (a = 0)

V (1, 3) = U1 + 3U2 + 4γ + ln(4) (a = −ln(3))

etc.

For a given n-pack having k1 ≥ 0 units of alternative 1, the general relationship is

V (k1, k2) = ln (n!)− ln (k1!)− ln (k2!) + k1U1 + k2U2 + nγ. (3)
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Moreover, by the de�nition of a(k1, k2) (see (1))

a(k1, k2) = U1 − U2 + V (k1 − 1, k2)− V (k1, k2 − 1)

= ln

(
n− 1

k1 − 1

)
− ln

(
n− 1

k1

)

= ln

(
k1
k2

)
= ln(k1)− ln(k2).

The optimal policy for consumption reduces to an intuitively appealing condition: �consume

alternative 1 if ε1 + ln (k1) > ε2 + ln (k2), otherwise consume alternative 2.� This policy

implies that the consumer should not necessarily choose the alternative that maximizes

their utility at each consumption occasion, but should instead consider the magnitude of

each product's error term (εi) adjusted for the quantity of each product on hand (ln (ki)).

Observe that this policy e�ectively preserves alternatives (probabilistically speaking) for

future consumption occasions. For example, a consumer with one unit of alternative 1 and

four units of alternative 2 would only consume the last unit of alternative 1 if−ln(4)+ε1 > ε2,

which occurs with probability .2 (see Proposition 1). This policy is consistent with the

empirical �ndings of Bown, Read and Summer (2002).

The foregoing dynamic analysis can be generalized to any number of alternatives. (The

proof parallels that of the generalized model and is treated there.)

Theorem 1. (Optimal Consumption and Value of an n-Pack, Canonical Model)

Consider an n-pack that includes ki units of alternative i, i = 1, ...,M . Assume the consumer

must select an alternative from their remaining pack on each future consumption occasion.

Then the optimal policy for each consumption occasion is to select the alternative that max-

imizes ln(ki) + εi, and the optimal expected utility (value) for consuming the entire n-pack

is

V (k1, k2, . . . , kM) = ln (n!)− ln ((k1)! · · · (kM)!) + k1U1 + · · ·+ kMUM + nγ (4)

Observe that the linear component k1U1 +k2U2 +k3U3 + · · ·+kMUM +nγ in (4) is simply

the expected utility of consuming the entire n-pack if the sequence of consumption were

prescribed in advance. The logarithmic terms ln (n!)−ln ((k1)!(k2)! · · · (kM)!) together re�ect

the additional expected utility of having the freedom to consume products in whatever order

one chooses�we will call this additional expected utility a �choice premium.� This premium

can also be interpreted as how much value the n-pack provides in terms of hedging against
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future preference uncertainty.2 The term ln (n!) captures the e�ect of an n-pack's size while

the term −ln ((k1)!(k2)! · · · (kM)!) captures the e�ects of both variety and inventory. For an

n-pack with a �xed number of units n, the choice premium is increased by including more

alternatives and/or ��attening� the distribution of alternatives (ki). The maximum choice

premium is ln (n!), which is realized when there is exactly one unit of n distinct alternatives;

the minimum choice premium is 0, which is realized when ki = n for some alternative i.

For any n-pack then, the ratio of the choice premium to ln (n!) can be interpreted as the

proportion of the available choice premium captured by that n-pack.

The intuition behind this optimal policy can be made clear by considering a simpli�ed

case. Let us suppose a given consumer has a 2-pack consisting of one unit of alternative 1

(their favorite), and one unit of alternative 2 (their second favorite), with U1 > U2. On the

�rst consumption occasion, suppose the observed error terms are e1 and e2 with e2 > e1.

Even if U2 + e2 < U1 + e1, alternative 2 represents the better consumption choice. This

is because U1 and U2 are �xed, and so the sum of the realized errors (one now, one later)

will ultimately decide the total utility received over both consumption occasions. Because

the future error is drawn from the same error distribution, taking the largest error available

now is the optimal action. In short, the optimal policy is about matching products with

occasion-speci�c consumption utilities. When more than one unit of inventory is available,

an adjustment is necessary. Indeed, if ki > 1 units of an alternative are present, then ki

realizations of εi must be accepted over the remaining consumption horizon; this necessarily

lowers the bar on the (realized) value of εi needed to make alternative i the best match. This

explains the ln(ki) adjustment in the optimal policy.

We can also calculate the probability that a consumer will choose a particular alternative

from their remaining n-pack at each consumption occasion.

Proposition 1. (The Proportionality Principle) The probability of choosing alternative i is
ki∑M
l=1 kl

, where ki is the current quantity of alternative i remaining in the n-pack.

This proposition follows from rearranging the probability statement and simplifying

terms:

2Although the choice premium would appear to be �xed whereas the expected utilities Ui are subject to
changes in scale and location, this is not an issue. First, recall the scale of the utilities has been normalized
to make the error terms standard Gumbel. Second, for two n-packs (x1, x2, . . . , xM ) and (y1, y2, . . . , yM ),
V (x1, x2, . . . , xM )−V (y1, y2, . . . , yM ) is independent of any shifts in location of the Ui. Thus when comparing
two n-packs via the optimal expected utility function V (·), only di�erences in their respective (normalized)
utilities and di�erences in their choice premia matter.
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Prob(i) = Prob{Ui + V (k1, · · · , ki−1, ki − 1, ki+1, · · · , kM) + εi

≥ Uj + V (k1, · · · , kj−1, kj − 1, kj+1, · · · , kM) + εj ∀j 6= i}

= Prob (V (k1, · · · , kM) + ln(ki) + εi ≥ V (k1, · · · , kM) + ln(kj) + εj ∀j 6= i)

= Prob (ln(ki) + εi ≥ ln(kj) + εj ∀j 6= i)

=
ki∑M
l=1 kl

The last equality follows from the standard logit probability formula with the customary

utility parameter �Ui� replaced by ln (ki).

3.3 Identifying a Consumer's Optimal n-Pack

Given a consumer's Ui (as can be estimated from purchase histories or using preference

elicitation methods), the value function in (4) can then be optimized over all possible in-

teger quantities (k1, k2, . . . , kM) (ki ≥ 0,
∑M

i=1 ki = n) to obtain the consumer's optimal

n-pack, (k∗1, k
∗
2, . . . , k

∗
M). The optimal pack represents the solution to the �rst stage (the se-

lection/shopping stage) of our two-stage problem (selection and then consumption). Figures

2a and 2b show the optimal n-packs of sizes n = 2 and n = 3. The optimal n-packs vary

by region, depending on di�erences in their ranked utilities; this is because translating all

utilities by a constant translates all n-pack values by a constant as well. We assume that

the utilities are ordered so that U1 ≥ U2 ≥ U3, �xing U1 = 0 for identi�cation purposes.

For n = 2, the distribution of product utilities is captured in the di�erence U1 − U2, which

we plot on the horizontal axis. Figure 2a shows that the 2-pack (1, 1) is optimal in the

region 0 ≤ U1 − U2 ≤ ln(2), where the relative preference for U1 is weaker, while (2, 0) is

optimal in the region U1 − U2 > ln (2), where the relative preference for U1 is stronger. For

n = 3, the distribution of utilities depends on both U1−U2 and U2−U3; the latter is plotted

on the vertical axis. Figure 2b shows that the 3-pack (1, 1, 1) is optimal when the relative

di�erences in utility, both U1 − U2 and U2 − U3, are su�ciently small; (2, 1, 0) is optimal if

U1 − U2 is su�ciently small but U2 − U3 is su�ciently large; (3, 0, 0) is optimal if U1 − U2 is

su�ciently large. Observe that, without knowing a consumer's particular utilities, it would

be impossible to determine if a consumer's n-pack selection represents a rational decision or

not.

The value function is separable and concave; however, the optimization is done over the

lattice points of a scaled simplex (
∑M

i=1 ki = n, ki ∈ N0). This problem is less than ideal for

12



Figure 2a. Optimal n-pack by Region for n = 2.
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many solvers, and we experienced signi�cant di�culties trying to solve this using o�-the-shelf

software (in large part because many of the k∗i are precisely zero and the optimizer would

terminate if these slipped into negative territory). Fortunately, it is quite easy to solve this

problem using a simple optimization algorithm based on swaps that is guaranteed to produce

a global optimal solution in at most n swaps. This algorithm is described next.

Suppose we have an incumbent feasible solution k1, k2, . . . , kM (
∑M

i=1 ki = n, ki ∈ N0)

and we want to improve it. One way is to increase a non-negative ki by one unit and decrease

a currently positive kj by one unit. The net change in the objective function caused by this

one unit swap is

Ui − ln (ki + 1)− Uj + ln(kj), (5)

and this suggests the following greedy technique. Interpreting ln(0) = lim
a→0+

(a) = −∞,

calculate the optimal indices

i∗ = argmax
i

(Ui − ln (ki + 1) , i = 1, ...,M) (6)

j∗ = argmin
j

(Uj − ln (kj) , j = 1, ...,M) . (7)

Ties in the maximum can be broken by selecting the alternative with the smallest index;

ties in the minimum can be broken by selecting the alternative with the largest index. Then

de�ne the di�erence

∆ ≡ Ui∗ − ln (ki∗ + 1)− Uj∗ + ln (kj∗) . (8)

If ∆ > 0 then increase ki∗ by one unit and decrease kj∗ by one unit; if no such combination

exists, then stop. Observe that if ∆ > 0, the objective function increases by a strictly

positive amount ∆ after each swap. Otherwise, ∆ ≤ 0 and we must have achieved the

stopping condition

Max
i

(Ui − ln (ki + 1) , i = 1, ...,M) ≤Min
j

(Uj − ln (kj) , j = 1, ...,M) . (9)

Theorem 2. (Optimality of the Swapping Algorithm) Given any starting solution

(k1, k2, . . . , kM) with
∑M

i=1 ki = n, ki ∈ N0, the swapping procedure described above converges

to an optimal n-pack in at most n swaps.

The conditions (9) represent necessary and su�cient conditions for an n-pack to be
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optimal, and they can be exploited in several ways. One of these is the connection between

the optimal (n)-pack and the optimal (n+ 1)-pack, which is described next.

Theorem 3. Let (k∗1, k
∗
2, . . . , k

∗
M) represent the consumer's optimal n-pack. Then the con-

sumer's optimal (n + 1)-pack is obtained by identifying the alternative i that maximizes

Ui − ln(k∗i + 1) and increasing that alternative by one unit.

The latter theorem not only means we can build larger optimal packs from smaller optimal

packs, but it also identi�es the marginal unit that should be added to any optimal n-pack.

For a retailer looking to encourage a consumer to buy an additional unit, this information

would be extremely useful.

The optimality conditions can be used to obtain insights into the structural properties of

the optimal n-pack as well. Some of these properties are included in the following theorem,

whose proof is contained in the appendix. (Recall ln(0) = lim
a→0+

(a) = −∞)

Theorem 4. The optimal n-pack, (k∗1, k
∗
2, . . . , k

∗
M), satis�es the following:

(i) If k∗j = 0, then k∗l = 0 for Ul < Uj

(ii) k∗1 ≥ k∗2 ≥ k∗3 ≥ · · · ≥ k∗M
(iii)

k∗i +1

k∗j
≥ exp (Ui − Uj) ∀i, j

The �rst condition implies the consumer's optimal n-pack is a contiguous set of their

favorite alternatives. This property is reminiscent of the assortment optimization results of

van Ryzin and Mahajan (1999) from the retailer's perspective, which may not be surprising

given that our problem is an assortment optimization problem from the consumer's perspec-

tive. The second condition requires monotonicity in quantities; higher quantities go with

higher utilities. The last property demonstrates that the ratio
k∗i +1

k∗j
must exceed the ratio

(exp (Ui) /exp (Uj)) for any two products i and j ; we recall that exp (Ui) /exp (Uj) is the

ratio of i and j 's choice probabilities in a logit framework. These properties will be used in

our subsequent analyses.

3.4 The Optimal n-Pack and Sequential Choice

The literature on multi-item set selection often uses sequential choice experiments (or

15



simply �sequential choice�) as a benchmark for measuring variety. Sequential choice implies

the consumer is allowed to choose any alternative from the full assortment (i.e., every alter-

native in a category that could be selected from a store) on each consumption occasion. This

wait-and-see approach means the consumer can observe the random component of utility (εi)

for every alternative in the full assortment immediately before making a consumption deci-

sion. The consumer thus maximizes their utility on every consumption occasion and cannot

obtain any greater utility than this when consuming n items on n consecutive occasions. We

show next that the optimal n-pack selected a priori is the same as the most probable set of

n items chosen sequentially.

As before, we describe each n-pack using anM dimensional vector (k1, k2, . . . , kM) where

ki ∈ N0 represents the integer quantity of alternative i and
∑M

i=1 ki = n. The optimal

n-pack, denoted by (k∗1, k
∗
2, . . . , k

∗
M), maximizes V (k1, k2, . . . , kM) in (4). Consider the

M dimensional vector (x1, x2, . . . , xM) where xi represents the quantity of alternative i

consumed sequentially (
∑M

i=1 xi = n). In contrast to an n-pack, the vector (x1, x2, . . . , xM)

is not selected in advance but rather constructed over n successive consumption occasions;

it represents the ��nal tally� for each alternative after the nth consumption occasion. De�ne

(x∗1, x
∗
2, . . . , x

∗
M) to be the vector of quantities that is most likely to be consumed when

choosing alternatives sequentially from the full assortment.

Proposition 2. (Optimal n-Pack versus Sequential Choice) Let (k∗1, k
∗
2, . . . , k

∗
M) be

the optimal n-pack for a consumer. For the same consumer, let (x∗1, x
∗
2, . . . , x

∗
M) be the set of

size n that is most likely to be chosen sequentially from the full assortment on n consecutive

consumption occasions. Then (k∗1, k
∗
2, . . . , k

∗
M) = (x∗1, x

∗
2, . . . , x

∗
M).

To see why the proposition is true, take U1 ≥ U2 ≥ · · · ≥ UM and translate (shift) all

Ui by a suitable constant so that
∑M

i=1 e
Ui = 1. This translation merely a�ects the additive

constant (nγ) of the value function, which has no bearing on the ordering of n-pack values

and thus can be ignored. The marginal probability of selecting alternative i from the full

assortment is therefore pi = eUi

eU1+eU2+···+eUM
= eUi . Note that ln(pi) = Ui due to our rescaling.

Then the probability of consuming the set (x1, x2, . . . , xM) via sequential selection is

Pr(x1, x2, . . . , xM) =
n!∏M
i=1 xi!

M∏
i=1

pxii . (10)
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We then observe that

(x∗1, x
∗
2, . . . , x

∗
M) = argmax

xi∈N0,
∑M

i=1 xi=n

n!∏M
i=1 xi!

M∏
i=1

pxii

= argmax
xi∈N0,

∑M
i=1 xi=n

ln

[
n!∏M
i=1 xi!

M∏
i=1

pxii

]
(11)

= argmax
xi∈N0,

∑M
i=1 xi=n

ln (n!)− ln

(
M∏
i=1

xi!

)
+

M∑
i=1

xiUi

= (k∗1, k
∗
2, . . . , k

∗
M)

A common �nding in the consumer psychology literature is that sets consumed via se-

quential choice (the (x1, x2, . . . , xM)) typically exhibit less variety than pre-selected n-packs

of the same size (e.g., Simonson 1990, Read and Loewenstein 1995, Salisbury and Fein-

berg 2008). If consumers select their n-packs optimally, then this would naturally be the

case if the most likely set selected sequentially exhibited more variety than most other sets

selected sequentially (probabilistically speaking). For example, consider a hypothetical sit-

uation where a utility-maximizing consumer likes M = 3 alternatives equally well. For this

consumer, the choice probability (or choice frequency) for each alternative is 1
3
. For this con-

sumer, the optimal 3-pack is (1, 1, 1), which solves (11). However, there are 3× 3× 3 = 27

equally probable permutations that this consumer could consume via sequential selection,

and only six of these permutations include all three product alternatives. Therefore, this

same consumer selecting alternatives sequentially would naturally consume less than three

distinct product alternatives with probability 21
27
.3 Thus while it might appear that this con-

sumer has selected a 3-pack with too much variety (compared to what would be consumed

via sequential choice), this �variety asymmetry� would be quite rational.

To see if this asymmetry was more than just a theoretical possibility, we surveyed 168

business students (61 MBA students and 107 BBA students) and asked them to report

the relative frequency with which they would consume their top three snack alternatives

(drawn from a larger list of approximately 20 snack alternatives available in local vending

machines). Since choice frequencies were only recorded for their top three snacks, we can only

compute results for the case n = M = 3, identical to our earlier hypothetical scenario. For

each 3-tuple of self-reported choice frequencies (favorite, second favorite, third favorite), we

can calculate each student's optimal 3-pack and thus their optimal number of alternatives.

Having done this for the sample of 168 students, we found that 26 students had an optimal

3Eighteen of the 27 outcomes include two di�erent product alternatives; 3 of the 27 include only a single
product alternative, 1, 2 or 3.
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3-pack with exactly one alternative; 80 students had an optimal 3-pack with exactly two

alternatives; and 62 students had an optimal 3-pack with exactly three alternatives. Using

the same self-reported choice frequencies, we found that in 102 of the 168 cases (60.7%),

the probability of a student consuming less variety than their optimal 3-pack in a sequential

choice experiment would be greater than their probability of consuming more. Additionally,

the average probability of a student consuming less variety than their optimal 3-pack over

all 168 cases was computed to be .383, whereas the average probability of consuming more

variety was computed to be .151. This o�ers additional support for the conjecture that

consuming less variety in sequential choice experiments may be a consequence, in part, of

probabilistic principles stemming from rational decision-making. Additional work is under

way to rigorously test this and other conjectures regarding variety.

3.5 Robustness of the Model: Assessing the Impact of the Gumbel

Assumption

To assess the robustness of our results to other error distributions, we conducted several

numerical experiments to ensure that our results were not overly dependent on the assump-

tion of a Gumbel distribution. We provide a summary of the results here; the reader is

referred to Appendix B for the details.

Two additional error distributions were selected, the uniform and the normal. In the �rst

numerical experiment, we analyzed 3-packs based on utilities calculated from actual choice

data. In the second experiment, we analyzed 6-packs based on utilities calculated from

simulated choice probabilities. In total, 106 test problems were analyzed, six involving 3-

packs and 100 involving 6-packs. In general, there were virtually no meanimgful discrepancies

in valuations of n-packs that consumers would actually choose. Consequently, the error

distribution appears to have little if any impact on a consumer's valuation of their most

preferred n-packs (say the ratings for their top 10-20 n-packs). There were some discrepancies

in valuations for problems that included alternatives the consumer would rarely (if ever)

select, i.e., test problems that included one or more �unpopular alternatives� with choice

probabilities approaching 0. In such cases, the corresponding utility in the normal and

Gumbel models becomes unbounded from below, whereas the utility in the uniform model

is always bounded. For this reason, the values for the Gumbel and normal distributions

tended to track each other closely for all n-packs, whereas the values for the uniform tended

to diverge for those n-packs that included unpopular alternatives, which are inherently �low-

value� n-packs. Because our analysis is based on determining a consumer's optimal n-pack,

di�erences in low-value n-packs have no impact on our results.
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4 Expected Utility of an n-Pack: The Generalized Model

4.1 The Optimal Value Function

In this section we assume the consumer may select the outside option on any consumption

occasion and thus reject all items remaining in their pack. The introduction of an outside

option e�ectively allows for di�erent consumption rates. It does, however, add complexity

compared to the canonical case.

We will again use n to denote the number of total units in the n-pack, and M to denote

the total number of distinct alternatives available. Let ki ∈ N0 = {0, 1, 2, 3, . . .} represent
the number of units of alternative i in the n-pack. The utility parameter for each alternative

is denoted by Uj for j = 0, 1, . . . ,M , (note that we include U0, the utility of the outside

option). The number of consumption occasions is denoted by t, which is also the number

of time periods in our dynamic analysis, and the value function with t periods to go is

denoted by Vt(k1, k2, . . . , kM), which means consumption periods in the generalized model

are numbered backwards (as is frequently done in dynamic programming models). The value

function in the terminal (salvage) period (period 0) is V0(k1, k2, . . . , kM) = 0. One can think

of this as an n-pack becoming worthless if its expiration date is reached without having been

consumed.

The �no consumption� option is represented by the subscript 0, and we can represent

the set that is ultimately consumed (or �realized�) after t consumption occasions by an

M + 1 dimensional consumption vector (x0, x1, · · · , xM), xi ∈ N0. As was the case in §3.4,
the consumption vector is simply the ��nal tally� of units consumed for each alternative,

including the number of times the no consumption option was invoked (this is recorded in

the vector's �rst position). De�ne the index set of vectors

It(y0, y1, y2, . . . , yM) =

{
(x0, x1, · · · , xM) :

∑M
i=0 xi = t; 0 ≤ xi ≤ yi,

xi ∈ N0, i = 0, 1, . . . , M

}
(12)

Observe that the set It requiresM+1 inputs (y0, y1, y2, . . . , yM) that serve as upper bounds

on all possibleM+1 dimensional consumption vectors for a pack having yi units of alternative

i. As an example, suppose there are only M = 2 products available, alternative 1 and

alternative 2. A 3-pack having two units of alternative 1 and one unit of alternative 2 would
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lead to

(four periods) I4(4, 2, 1) = {(4, 0, 0); (3, 1, 0); (3, 0, 1); (2, 1, 1); (2, 2, 0), (1, 2, 1)}

(three periods) I3(3, 2, 1) = {(3, 0, 0); (2, 1, 0); (2, 0, 1); (1, 1, 1); (1, 2, 0); (0, 2, 1)}

(two periods) I2(2, 2, 1) = {(2, 0, 0); (1, 1, 0); (1, 0, 1); (0, 1, 1); (0, 2, 0)}

(one period) I1(1, 2, 1) = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}

Observe that in each of these three sets, the �rst input (y0) is taken to equal the number

of consumption occasions. This is appropriate since y0 is the upper bound on the number

of times the �no consumption� option could be invoked, which is equal to the number of

consumption periods, t. While the number of terms can be quite large, it is bounded inde-

pendently of the number of consumption occasions t. Indeed, there are at most
∏M

i=1(ki + 1)

elements in It(t, k1, k2, . . . , kM), which corresponds to the number of distinct subsets of

(k1, k2, . . . , kM) padded by the appropriate number of �outside option� selections to bring

the total number of selections to t. This upper bound is obtained for all t ≥ n.

Theorem 5. (Optimal Value of an n-Pack, Generalized Model) At each consumption

occasion, assume the consumer can choose a product from the n-pack or select an outside op-

tion. The optimal expected value function over t consumption periods (assuming an optimal

policy is followed each period) is

Vt(k1, k2, . . . , kM) = ln

 ∑
(x0,x1,...,xM )∈It(t,k1,k2,...,kM )

t!

x0!x1! · · ·xM !
e
∑M

j=0 xjUj

+ tγ (13)

The optimal policy at each consumption occasion t is to select, among the available

alternatives, the one that maximizes current utility plus expected utility-to-go, i.e,. the one

that maximizes U0+ε0+Vt−1(k1, k2, . . . , kM), Uj+εj+Vt−1(k1, k2, kj−1, . . . , kM) for kj > 0.

Unlike the canonical version, there is no additional simpli�cation in the optimal policy.

While the value function is somewhat complicated, it can be simpli�ed under the as-

sumption t ≥ n, which we would expect to hold in practice. As noted earlier, there are a

constant
∏M

i=1(ki + 1) terms in the summation of (13). Additionally, de�ning the shifted

parameters U ′i = Ui−U0 (so that the outside option has utility parameter U ′0 = 0), the value

20



function (13) can be expressed as

Vt(k1, k2, . . . , kM) = ln

[ ∑
xi≤ki, i≥1

t!

(t−
∑M

i=1 xi)!
· e

∑M
j=1 xjU

′
j

x1! · · ·xM !

]
+ t(γ + U0). (14)

This simpli�ed form is easier to manipulate and is used extensively in Theorem 7.

The terms in the value function (13) generalize the probability interpretation established

for the canonical model in section 3.4. There, we established that the value function for the

n-pack (k1, k2, . . . , kM) in the canonical model could be equated to the log-probability of

consuming the same set of products in a sequential choice experiment; i.e., an experiment in

which the consumer can select the product from the full assortment that is most preferred on

each consumption occasion. This further implies that the utility-maximizing n-pack selected

a priori�the consumer's �optimal n-pack�� is also the set of product alternatives most

likely to be consumed in a sequential choice experiment. As in the canonical model, we

assume that all utility parameters have been translated so that
∑M

i=0 e
Ui = 1, which we

recall simply alters the additive constant γ used in the value function (13). The terms in

the summation in (13) then represent the cumulative probability of consuming the n-pack

(k1, k2, . . . , kM) or any subset thereof in a sequential choice experiment. (If a subset of the

n-pack of size n′ < n is consumed, the outside option must have been selected exactly t− n′

times.) Moreover, maximizing the value function in the generalized model is equivalent to

maximizing the probability of consuming the n-pack (k1, k2, . . . , kM) or any of its subsets

in a sequential choice experiment. The main di�erence in the generalized model is that

subsets of the original n-pack must be included in the probability statement because the

entire n-pack need not be consumed within t time periods.

The position of U0 relative to the products U1, U2, . . . , UM has considerable impact on

the model (canonical or generalized) that is most appropriate. In applications where the

utilities for the products in the n-pack are considerably greater than the utility for the

outside option, one would expect the canonical model to work well. This is because the

outside option has virtually no chance of being selected as the preferred alternative (unless

the pack is exhausted). This could be the case for many products that are consumed on a

regular schedule, e.g., cereal in the morning. But for product categories where the utility

of the outside option is greater than or equal to the utilities of products in the n-pack, the

outside option becomes a viable alternative. One would expect categories of less frequently

consumed goods to �t this scenario. The natural question is then how does the optimal

n-pack for the generalized model compare to the optimal n-pack for the canonical model?

This is explored next.
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4.2 Variety, Consumption Horizons, and the Outside Option

Imagine two consumers, A and B, both of whom like exactly three types of wine: Chardon-

nay, Merlot, and Cabernet. Both consumers prefer Chardonnay 70% of the time, Merlot 15%

of the time, and Cabernet 15% of the time. However, Consumer A enjoys a bottle every

evening whereas Consumer B enjoys a bottle about once a week. If we assume the opportu-

nity to consume wine presents itself every evening, then Consumer A has a very small value

for U0 and thus a high usage rate for wine whereas Consumer B has a much higher value for

U0 and thus a low usage rate for wine. Given this information, which 3-pack of wine should

each consumer buy? (We ignore, of course, the fact Consumer A would probably tend to

buy a larger pack size.)

The fact that consumer A always chooses wine is evidence of an intrinsically low value

for U0, one that is exceeded by U1, U2, and U3. We would expect this consumer to always

prefer wine compared to the outside option. Indeed, for any t ≥ n, as U0 → −∞ the value

function of the generalized model (13) can be well approximated by the value function of the

canonical model (up to an additive constant). This is because the dominant term in (13)

for any n-pack becomes t!
(t−n)!k1!···kM !

e
∑M

j=1 kjUje(t−n)U0 , with the remaining
[∏M

i=1(ki + 1)
]
−1

terms containing additional powers of eU0 , which diminishes their contribution to Vt as

U0 → −∞. In Consumer A's case, the utility maximizing 3-pack is therefore three bottles

of Chardonnay, which is the same as in the canonical model.

The fact that Consumer B chooses wine infrequently is evidence of an intrinsically higher

value for U0. Given they select the outside option 6/7 of the time, their value for U0 exceeds

the values for U1, U2, and U3 (we used U0 = −.1544, U1 = −2.3011, U2 = U3 = −3.8415

so that
∑3

i=0 e
Ui = 1 ). Nevertheless, for large values of t, the results for Consumer B are

identical to those of Consumer A. This is because, as t → ∞, the dominant term in (13) is

again t!
(t−n)!k1!···kM !

e
∑M

j=1 kjUje(t−n)U0 , with the remaining
[∏M

i=1(ki + 1)
]
− 1 terms multiplied

by at least an additional factor of 1/(t−n+ 1), which diminishes their contribution to Vt as

t→∞. Thus the in�nite horizon results are identical to those of the canonical model.

However, given smaller values of t for Consumer B, the optimal 3-pack is not simply

three bottles of Chardonnay. Table 2 tracks the optimal 3-pack for di�erent horizon lengths,

t. The intuition behind the increased variety for smaller values of t can be illustrated by a

simple thought experiment. Suppose that the consumer could select a 3-pack for only one

(t = 1) consumption opportunity. It should be clear that the optimal 3-pack for the case

t = 1 would be for the consumer to have exactly one unit of their 3 favorite products; there

is no advantage to having multiple units of any product when t = 1, and so maximizing

variety maximizes the number of independent draws, which in turn maximizes the chances

of getting the best match for this single period consumption occasion. The case t = 1
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Table 2. Optimal 3-pack for the Wine Example.

captures what is typically known in dynamic programming as the �end of horizon e�ect.�

Over slightly longer horizons, carrying greater variety than (k∗1, k
∗
2, . . . , k

∗
M) would still be

optimal to address these end of horizon e�ects. Nevertheless, end of horizon e�ects typically

dissipate over su�ciently long horizons, and this dynamic model is no di�erent. As the

horizon lengthens, there are su�cient opportunities to match the right item with the right

consumption occasion, and the optimal n-pack converges to that of the canonical model.

The relationship between the optimal n-pack in the generalized model and the optimal n-

pack in the canonical model can be characterized more precisely. The precise result is stated

in the following theorem (where alternatives are again labelled so that U1 ≥ U2 ≥ · · · ≥ UM).

The condition t ≥ n is included to simplify the proof; otherwise, the number of terms in the

value function would also depend on t.

Theorem 6. For any horizon t ≥ n, denote the optimal n-pack of the canonical model by

(k∗1, k
∗
2, . . . , k

∗
M) and that of the generalized model by (q∗1, q

∗
2, . . . , q

∗
M). Then it cannot happen

that q∗j > k∗j and q∗i < k∗i for j < i.

The theorem requires that the components of the optimal vectors k∗ = (k∗1, k
∗
2, . . . , k

∗
M)

and q∗ = (q∗1, q
∗
2, . . . , q

∗
M) follow a strict pattern. Assuming the vectors are not identical,

then there is an index, say c, where a change occurs; for i ≤ c we must have k∗i ≥ q∗i , and

for i > c we must have k∗i ≤ q∗i . The Theorem permits the possibility k∗ = (5, 2, 2, 0, 0) and

q∗ = (3, 3, 3, 0, 0), but not the possibility k∗ = (5, 2, 2, 0, 0) and q∗ = (3, 3, 1, 1, 1). In the

�rst case, the k∗i and q
∗
i have the componentwise relationship (≥,≤,≤,≤,≤), and thus the

change in inequalities occurs at c = 1. In the second case, the componentwise relationship

is (≥,≤,≥,≤,≤), and no (single) change point c exists. One should think of the index c as

a turning point.

The structural relationship between q∗ and k∗ is closely related to the concept of ma-

jorization. We say a vector x ∈ RM majorizes (or dominates) a vector y ∈ RM (written

x � y) provided (i)
∑l

i=1 x(i) ≥
∑l

i=1 y(i) for l = 1, 2, . . . ,M , where the notation z(i) refers to

the ith largest value in the vector z, and (ii)
∑M

i=1 xi =
∑M

i=1 yi. The concept of majorization
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is weaker than the condition posed in Theorem 6. Consider our previous example involving

k∗ = (5, 2, 2, 0, 0) and q∗ = (3, 3, 1, 1, 1); it is clear that k∗ � q∗ even though this pair does

not satisfy the relationship described by the theorem. The contrast between the two con-

cepts can be sharpened by looking at the di�erence in partial sums; whereas majorization

requires that
∑l

i=1 x(i) −
∑l

i=1 y(i) ≥ 0 for l = 1, 2, . . . ,M , the condition k∗i ≥ q∗i for i ≤ c

and k∗i ≤ q∗i for i > c requires that
∑l

i=1 x(i) −
∑l

i=1 y(i) is nondecreasing for l ≤ c and non-

increasing for l > c. If we de�ne a piecewise linear function g(l) whose value at the integers

is g(l) =
∑l

i=1 x(i) −
∑l

i=1 y(i) (l = 1, 2, . . . ,M ), majorization requires g to be nonnegative

whereas Theorem 6 requires g to be nonnegative and quasiconcave with a maximum at the

change point c. We could �nd no reference in the literature to this stronger notion of ma-

jorization, which admits further generalizations (e.g., the condition x(i)−y(i) ≥ x(i+1)−y(i+1)

would make g(l) concave). We refer to the type of majorization given in Theorem 6 as strong

majorization.

De�nition 1. (Strong Majorization) We say a vector x ∈ RM strongly majorizes a vector

y ∈ RM and write x
s
� y provided:

1.
∑M

i=1 xi =
∑M

i=1 yi

2. For some index c < M , we have x(i) ≥ y(i) for i ≤ c and y(i) ≥ x(i) for i > c.

We sought to generalize Theorem 6 by comparing the optimal solutions to (13) between

successive time periods. In numerous numerical examples, we found the optimal solution to

the (t+ 1) period problem strongly majorized the optimal solution to the t period problem.

We conjecture that this is always the case. However, we could not �nd an analytical proof

for this condition. Unlike Theorem 6, whose proof exploits the simple optimality conditions

(9) associated with the canonical n-pack, the solution to the generalized model is not charac-

terized by simple optimality conditions. Even the necessary conditions for local optimality,

which are based on localized unit swaps, are very complex.

Another property that was observed in all of our numerical examples re�ects how the

value function changes over time for a particular n-pack. Fortunately, this property has an

analytical proof (although ours is surprisingly complicated). The condition t ≥ n+ 1 is used

just as t ≥ n was used in the previous theorem; it implies the number of terms included in

the summation of (13) is independent of t (see also (14)).

Theorem 7. (Diminishing Marginal Value) Consider any n-pack K = (k1, k2, . . . , kM) and

any time period t ≥ n+ 1. Then Vt+1(K)− Vt(K) ≤ Vt(K)− Vt−1(K).
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The property of diminishing marginal value makes intuitive sense. Because the optimal

value is based on matching the product with the consumption occasion, adding additional

periods should not yield proportional gains in value. Adding additional periods means we

are searching for better opportunities in the right hand tail of the error distribution, and

better payo�s should become increasingly di�cult to obtain as time increases. Dynamic

models in revenue management often require this type of structure, and so the property is

an important one if the model is to �nd additional applications in this area.

5 Summary and Future Research

We have proposed a utility-maximizing model based on consumers' long-run consumption

preferences to estimate the value they can expect to receive from an n-pack of substitutable

products. Our canonical model predicts that (i) strategic consumers will choose di�erent

product alternatives in proportion to their available inventory and (ii) the total value con-

sumers derive from an n-pack increases in the pack's utility parameters but decreases as the

distribution of products within the n-pack becomes more concentrated. This result could

explain the seemingly excessive variety that has been observed in behavioral experiments

on n-pack selection for future consumption. Our generalized model demonstrates that the

inclusion of an outside option (e�ectively reducing the consumption rate), which to our

knowledge has never been done, would lead to even more variety in n-pack alternatives and

even greater dispersion in n-pack quantities.

Our model assumes that both the consumption utilities Ui and the distribution of stochas-

tic errors εi are stationary, but this might not always be the case. Allowing for non-

stationarity in consumption utilities (i.e., variety-seeking, state dependence) or in the stochas-

tic error distribution (i.e., learning) might lead to new results and insights. Our model also

assumes that there is no discounting of future utilities, so temporal discounting is another

possible area for future research. The direct approach, introducing a discount factor on

the expected �value-to-go� function, sacri�ces the virtue of a closed-form value function.

However, it may still be possible to analyze the value function implicitly or to introduce a

di�erent discount mechanism that preserves the closed-form solution. Our model also does

not currently allow for any replenishment of inventory by the consumer. Could replenish-

ment be included as yet another choice at each consumption occasion? This would allow

the consumer to obtain an alternative they strongly prefer that is not currently available in

what remains of their n-pack. Is it possible to obtain an optimal replenishment policy?

There are also many ways to extend our analysis to include various operational consid-
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erations. Perhaps the most obvious extension is to assume that the consumption utility

parameters Ui are functions of product attributes, such as price. Still another useful exten-

sion would be to investigate how n-pack valuation a�ects consumers' willingness to pay. For

example, many retailers implicitly o�er the option to purchase an n-pack including only a

single product alternative at a low price per unit, or purchase single units of di�erent prod-

uct alternatives at a higher price per unit. For example, a 6-pack of a single brand/type

of beer might cost $8.99 (≈ $1.50/beer) while purchasing di�erent beers individually might

cost $1.99/beer. Depending on the di�erence between consumers' valuation of their optimal

n-pack and an n-pack with only their favorite alternative, the retailer may be able to price

a �build your own 6-pack� option to extract additional revenues while also increasing con-

sumers' utility. Pricing n-packs and designing promotions that target individual consumers

are natural applications for this type of model.

As noted in the introduction, there are some applications of our model that require very

little additional work. One such application involves auctioning a set of n related products.

In this case, the utility parameters Ui are replaced by the expected maximum bid price for

alternative i, say Wi. Calculation of the Wi might require a separate model to account for

the number of bidders and other factors. The price actually bid for alternative i at auction

would then be modeled by Wi+ εi, where we assume the Wi have been normalized (rescaled)

so that the error term εi has a standard Gumbel distribution. A set of n related products

having ki units of alternative i is then put up for auction, and bidders submit individual bids

for any or all alternatives they are interested in. At the conclusion of bidding, the maximum

bid for alternative i, bi, is noted and the winning bid for a single unit of a single alternative

is revealed. The winning bid/alternative would be determined by max
i

(ln(ki) + ei) where

ei = bi−Wi. Observe this is the optimal policy in Theorem 1, where now it serves to optimally

match the product with the auction. One unit of the winning alternative is removed from the

set and the remaining set of n−1 units is again put up for auction. After n such auctions, all

units would be sold. The expected revenue received from this type of auction would be given

by the value function in Theorem 1, which exceeds the expected revenue of selling each item

in a series of individual auctions. While there are potential model assumption violations

that would need to be addressed in practice (independence of the error terms, etc.), this

type of auction provides several interesting possibilities. For example, because only one unit

is sold at a time, bidders can safely bid on a subset of products without risking an excessive

payout; the auction house would not need to accept poor bids for a particular alternative as

long as there are better bidding results for another alternative; in the earlier auction rounds,

valuable bidding data is obtained on all unsold alternatives.

We have treated the size of the n-pack as exogenous. However, one could extend our
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model to include a disutility term for storage and/or the price of units, and the optimization

would then determine the appropriate pack size along with the optimal pack. Given the

simple structure of the value function in the canonical model, the optimization problem thus

created might be relatively straightforward to analyze.

27



References

[1] Bown, N. J., D. Read and B. Summers. 2003. The lure of choice. Journal of Behavioral

Decision Making, 16(4), 297-308.

[2] Gould, H.W. 1972. Combinatorial Identities. Morgantown Printing and Binding Co.,

page 22.

[3] Gould, H.W. 1956. Some generalizations of Vandermonde's convolution. American Math

Monthly, 63, 84-91.

[4] Guo, L. 2010. Capturing consumption �exibility in assortment choice from scanner panel

data. Management Science, 56(10), 1815-1832.

[5] Guo, L. 2006. Consumption �exibility, product con�guration, and market competition.

Marketing Science, 25(2), 116-130.

[6] Hauser, J. R., and B. Wernerfelt. 1990. An evaluation cost model of consideration sets.

Journal of Consumer Research, 16(4), 393-408.

[7] Kahn, B. E., and D. R. Lehmann. 1991. Modeling choice among assortments. Journal

of Retailing, 67(3), 274.

[8] Kahneman, D., and J. Snell. 1990. Predicting utility. Insights in decision making: a

tribute to Hillel J. Einhorn. Robert M. Hogarth (ed). University of Chicago Press,

Chicago, IL, 295-310.

[9] Kreps, D. M. 1979. A representative theorem for "preference for �exibility". Economet-

rica (Pre-1986), 47(3), 565.

[10] March, J. G. 1978. Bounded rationality, ambiguity, and the engineering of choice. Bell

Journal of Economics, 9(2), 587.

[11] Pessemier, E. A. 1978. Stochastic properties of changing preferences. The American

Economic Review, 68(2), 380.

[12] Read, D., and G. Loewenstein. 1995. Diversi�cation bias: Explaining the discrepancy

in variety seeking between combined and separated choices. Journal of Experimental

Psychology: Applied, 1(1), 34-49.

28



[13] Roberts, J. H., and Lattin, J. M. 1991. Development and testing of a model of consid-

eration set composition. Journal of Marketing Research, 28(4), 429.

[14] Rusmevichientong, P., and H. Topaloglu. 2012. Robust assortment optimization in rev-

enue management under the multinomial logit choice model. Operations Research, 60(4),

865-882.

[15] Salisbury, L. C., and F. M. Feinberg. 2008. Future preference uncertainty and diversi�-

cation: The role of temporal stochastic in�ation. Journal of Consumer Research, 35(2),

349.

[16] Simonson, I. 1990. The e�ect of purchase quantity and timing on variety-seeking. Journal

of Marketing Research, 27(2), 150.

[17] Talluri, K. and G. van Ryzin. 2004. Revenue management under a general discrete choice

model of consumer behavior. Management Science, 50(1), 15-23.

[18] van Ryzin, G. and S. Mahajan. 1999. On the relationship between inventory costs and

variety bene�ts in retail assortments. Management Science, 45(11), 1496-1509.

[19] van Ryzin, G. J., and S. Mahajan. 1999. Retail inventories and consumer choice. Quan-

titative models for supply chain management. Springer US, 491-551.

[20] Walsh, J. W. 1995. Flexibility in consumer purchasing for uncertain future tastes. Mar-

keting Science, 14(2), 148-165.

29



Appendix A (Proofs)

THEOREM 2

Proof. Part I: Optimality of stopping condition. Consider an n-pack with quantities ki

for alternative i that satis�es the stopping rule (9). Then for any other pack with quan-

tities k′i, we can de�ne two sets: I+ = {i : ki > k′i} and I− =
{
j : kj < k′j

}
. We have

V (k1, k2, . . . , kM) = ln (n!) −
∑M

i=1 ln (ki!) +
∑M

i=1 kiUi and V (k′1, k
′
2, . . . , k

′
M) = ln (n!) −∑M

i=1 ln (k′i!) +
∑M

i=1 k
′
iUi. Now observe that

V (k1, k2, . . . , kM)− V (k′1, k
′
2, . . . , k

′
M) =

∑
i∈I+

ln (k′i!)− ln (ki!) + (ki − k′i)Ui (15)

+
∑
j∈I−

ln
(
k′j!
)
− ln (kj!) + (kj − k′j)Uj.

Furthermore, observe that ∑
i∈I+

(ki − k′i) = −
∑
j∈I−

(kj − k′j) (16)

because any gain in units across I+ must be exactly matched by losses across I−to maintain

an n-pack with exactly n units.

Suppose now we (1) split the U ′is and U ′js in (15) into individual terms having unit

coe�cients (i.e., (ki − k′i)Ui =
∑ki−k′i

l=1 Ui and (kj − k′j)Uj = −
∑k′i−kj

l=1 Uj) and (2) cancel like

terms in the log-factorials. The term ln (k′i!) − ln (ki!) + (ki − k′i)Ui in the �rst summation

on the right hand side of (15) can thus be expressed as

ln (k′i!)− ln (ki!) + (ki − k′i)Ui = (Ui − ln(ki)) + (Ui − ln(ki − 1)) + · · · (17)

+ (Ui − ln(ki − k′i))

whereas the term ln
(
k′j!
)
− ln (kj!) + (kj−k′j)Uj in the second summation on the right hand

side of (15) can be expressed as

ln
(
k′j!
)
− ln (kj!) + (kj − k′j)Uj = (ln(kj + 1)− Uj) + (ln(kj + 2)− Uj) + · · · (18)

+
(
ln(k′j)− Uj

)
.

If we do this for each term in each summation, we will obtain a total of
∑

i∈I+(ki − k′i)

terms of each form (see (16)). We can then pair each term of the form Ui − ln(ki − li) for

i ∈ I+, li ∈ N0, 0 ≤ li ≤ ki − k′i from (17) with a term of the form −Uj + ln(kj + mj) for
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j ∈ I−, mj ∈ N, 1 ≤ mj ≤ k′j − kj from (18). These pairings can be done in any manner.

We can thus rewrite (15) using a single summation where each (paired) term has the general

form

Ui − Uj − ln(ki − li) + ln(kj +mj) (19)

i ∈ I+, li ∈ N0, li ≤ ki − k′i
j ∈ I−, mj ∈ N, 1 ≤ mj ≤ k′j − kj

But by the stopping condition (9), with the roles of i and j interchanged, we must have

Ui − ln (ki)− Uj + ln (kj + 1) ≥ 0 all i, j

=⇒ Ui − ln (ki − li)− Uj + ln (kj +mj) ≥ 0 all i, j

which implies all the terms in (19) are non-negative and thus so is the summation in (15).

Thus V (k1, k2, . . . , kM)− V (k′1, k
′
2, . . . , k

′
M) ≥ 0 as was desired.

Part II: Convergence in at most n swaps. To show the algorithm converges in at most

n swaps, we will show that an alternative that gains a unit will never lose a unit, and an

alternative that loses a unit will never gain back a unit (note this implies each unit can be

moved at most once). To do this, we �rst replace each utility Ui with the quantity Ui − i · ε
where ε is a non-Archimedean in�nitesimal, a positive number that is smaller than any

number in the base �eld. This creates a strict ordering in the utilities used in (6,7) so that

ties are broken by the non-Archimedean term. This is equivalent to breaking ties in (6) by

selecting the alternative with the smallest index, and breaking ties in (7) by selecting the

alternative with the largest index.

We �rst show that an alternative that gains a marginal unit can never lose that marginal

unit. Suppose g is a maximizer to (6) and therefore a �gainer� in the current swap and l is

the minimizer to (7) and therefore a �loser� in the current swap. If g = l , then it is easy

to see the optimality conditions are met and we are done. We therefore assume g 6= l. We

must have

Ug − g · ε− ln (kg + 1) > Ui − i · ε− ln (ki + 1) all i 6= g. (20)

Ul − l · ε− ln (kl) < Uj − j · ε− ln (kj) j 6= l. (21)
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The gain (4) in our objective function for the current swap is

4 = Ug − g · ε− ln (kg + 1)− Ul + l · ε+ ln (kl) > 0. (22)

The alternative g cannot be the minimizer for (7)�and hence the loser�in the next iteration of

the algorithm unless the optimality conditions have been achieved. For if g is the minimizer of

(7) in the next swap, then using kg + 1 units for alternative g and kl− 1 units for alternative

l, we may apply (5) to calculate the possible gains in the objective function at the next

iteration as

Ui − i · ε− ln (ki + 1)− (Ug − g · ε− ln (kg + 1)) i 6= l, g (23)

Ul − l · ε− ln (kl)− (Ug − g · ε− ln (kg + 1)) . (24)

The potential gains in (23) are all negative by (20); the potential gain in (24) is negative by

(22). This means the optimality conditions have been met (and we are done), or else g is not

the minimizer for (7) in the next iteration of our algorithm. If it is not the minimizer, then

there are two possibilities: case (i) g, and only g, gains additional units in all future swaps;

case (ii) some other alternative, say g′ (g′ 6= g), gains one or more units at some point.

For case (i), there is nothing to prove because this is consistent with our premise (g never

loses the (kg + 1)st unit). For case (ii), we know by (20) that Ug − g · ε − ln (kg + 1) >

Ug′ − g′ · ε− ln (kg′ + 1), and so Ug − g · ε− ln (kg + 1) > Ug′ − g′ · ε− ln (kg′ +m) for any

m ∈ {1, 2, . . .}. Thus g could never be a minimizer in (7) with (kg + 1) units of inventory

once it has been a maximizer in (6). Since g and kg were arbitrary, this proves that any

marginal unit gained is never lost.

We now show that an alternative that loses a marginal unit can never gain back that

marginal unit. We claim the alternative l cannot be a maximizer for (20)�and hence a

gainer�in the next iteration of the algorithm unless the optimality conditions have been

achieved. For if l is a maximizer in the next swap, then using kg + 1 units for alternative

g and kl − 1 units for alternative l, we may apply (5) to calculate the possible gains in the

objective function at the next iteration as

Ul − l · ε− ln (kl)− (Uj − j · ε− ln (kj)) j 6= l, g (25)

Ul − l · ε− ln (kl)− (Ug − g · ε− ln (kg + 1)) (26)
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The potential gains in (25) are all negative by (21); the potential gain in (26) is negative by

(22). This means the optimality conditions have been met (and we are done), or else l is

not the maximizer for (20) in the next iteration of our algorithm. If l is not the maximizer,

there are two remaining possibilities: case (i) l, and only l, loses additional units in all future

swaps; case (ii) some other alternative, say l′ (l′ 6= l), loses one or more units at some point.

For case (i), there is nothing to prove because this is consistent with our premise (l never

gains back the lth unit). For case (ii), we know by (21) that Ul−l·ε−ln (kl) < Ul′−l′·ε−ln (kl′)

and so Ul− l · ε− ln (kl) < Ul′ − l′ · ε− ln (kl′ −m) for any m ∈ {1, 2, . . .}, kl′ −m ≥ 0. Thus

l could never be a maximizer in (20) with (kl − 1) units of l once it has been a minimizer in

(21). Since l and kl were arbitrary, this proves that any marginal unit lost is never gained

back.

Because an alternative that gains a unit can never lose that unit, and an alternative that

loses a unit can never gain back that unit, each unit in the initial feasible solution can be

moved at most once. This means the algorithm converges in at most n swaps.

THEOREM 3

Proof. We �rst create a �dummy alternative,� say UM+1, which is much less attractive than

any alternative in the current list. For example, one could set UM+1 = −Θ, where Θ is

larger than any number in the base �eld. Now apply the algorithm of Theorem 2 with the

initial (dummy) solution ki = 0 for i = 1, 2, . . . ,M and kM+1 = n. (This starting solution is

analogous to that used by the �big M� method in LP's simplex algorithm.) AlternativeM+1

will always be the minimum in (7), which means units will be removed from this alternative

one at a time until there are no units left. The �rst unit removed will always go to alternative

1 because it solves (6). Observe that this must be the optimal 1-pack; for if the dummy

alternative initially had n=1 units, the algorithm would terminate. The second unit removed

always goes to the alternative that solves (6) with the values k1 = 1,ki = 0 for i = 2, . . . ,M .

Observe that the alternative receiving the second unit is independent of n (n ≥ 2) and

the resulting 2-pack must be the optimal 2-pack; for if the dummy alternative initially had

n=2 units, the algorithm would terminate. Proceeding in this fashion, at iteration n + 1,

we compute the optimal (n + 1)-pack by adding a unit to the alternative that maximizes
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Ui − ln(k∗i + 1), where the values k∗i are the quantities already determined for the optimal

(n)-pack at the previous iteration. Observe that n only determines how many swaps are

made, and the sequence of swaps is otherwise independent of n.

THEOREM 4.

Proof. To prove (i), assume the optimal solution satis�es ki = 0 and kj > 0 with Ui > Uj .

Then swapping the two values increases the linear utility term in (1) without a�ecting the

choice premium. This violates the optimality of the assumed solution and means the optimal

solution must be a contiguous set of the consumer's favorite alternatives.

To prove (ii), assume for some optimal n-pack (k∗1, k
∗
2, . . . , k

∗
M) that k∗i < k∗j for some Ui >

Uj. Then one could swap the quantities as in (i) to increase the value function (4). (Observe

the linear utility term would increase while the choice premium remained unchanged.) this

violates the optimality assumption.

To prove (iii), consider the optimality conditions in (9). For any two alternatives i and

j we therefore have Ui − ln (k∗i + 1) ≤ Uj − ln
(
k∗j
)
, which can be rearranged to yield the

result.

THEOREM 5.

Proof. For t = 1, the index set I1(1, k1, k2, . . . , kM) reduces to a set of m + 1 vectors, each

having dimension (M + 1). One vector is (1, 0, 0, . . .), which captures the selection of the

outside option; the remaining m vectors have a �1� in the position of the alternative included

in the n-pack and 0 elsewhere. The value formula for t = 1 reduces to the well-known ex-

pected value formula for the alternative having maximum utility, which is (see , for instance,

Ghulam Ali, 2008)

V1(k1, k2, . . . , kM) = ln

 ∑
(x0,x1,...,xM )∈I1(1,k1,k2,...,kM )

e
∑M

j=0 xjUj

+ γ. (27)

(Here, γ is the Euler-Mascheroni constant, γ ≈ .577.) To prove the general case, suppose it

is true for t. Then for t + 1, the optimal policy is to choose the alternative that maximizes

current utility plus utility-to-go, i.e., the maximum of Uj + εj + Vt(k1, k2, kj − 1, . . . , kM)

for those j having kj > 0 and also U0 + ε0 + Vt(k1, k2, . . . , kM). This implies we must
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have (using (27) with Uj replaced by Uj + Vt(k1, k2, kj − 1, . . . , kM) and U0 replaced by

U0 + Vt(k1, k2, . . . , kM)):

Vt+1(k1, k2, . . . , kM) = ln

 ∑
{j: kj>0}

eUj+Vt(k1, k2, kj−1,..., kM )

+ eU0+Vt(k1, k2,..., kM )

+ γ, (28)

which by the induction step

= ln




∑
{j: kj>0}

∑
(x0,x1,...,xM )∈It(t,k1,k2,...kj−1,...,kM )

t!

x0!x1! · · ·xM !
eUj+

∑M
l=0 xlUl

+

∑
(x0,x1,...,xM )∈It(t,k1,k2,...,kM )

t!
x0!x1!···xM !

eU0+
∑M

l=0 xlUl

 · e
tγ

+ γ

(29)

Grouping like terms, observe that the coe�cient of the general term ea0U0+a1U1+···+aMUM

(0 ≤ ai ≤ ki, ai ∈ N0,
∑M

j=0 aj = t+ 1) is made up of contributions from the summations in

(29). To capture these contributions, de�ne the function

δ(z) =

0 if z = 0

1 if z > 0.

Then the total contribution from the summations in (29) to the coe�cient of ea0U0+a1U1+···+aMUM

can be calculated as follows:

δ(a0) · t!
max(a0 − 1, 0)!a1! · · · aM !

+
δ(a1) · t!

a0!max(a1 − 1, 0)! · · · aM !
+

+
δ(a2) · t!

a0!a1!max(a2 − 1, 0)! · · · aM !
+ · · ·+ δ(aM) · t!

a0!a1!a2! · · ·max(aM − 1, 0)!

=
t! (a0 + a1 + · · ·+ aM)

a0!a1!a2! · · · aM !

=
(t+ 1)!

a0!a1!a2! · · · aM !
,

which is precisely the coe�cient needed to make the formula (13) correct for Vt+1(k1, k2, . . . , kM).

A nearly identical proof works for the canonical case where ki ∈ N+,
∑M

i=1 ki = n, and the

number of consumption occasions is n (although one can also prove this result quite easily

by induction on the size, n, of the n-pack). In the previous proof, one eliminates j = 0, U0,
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and x0 from the analysis. The index set reduces to

It(k1, k2, . . . , kM) =

{
(x1, x2, , , , , xM) :

M∑
i=1

xi = t, 0 ≤ xi ≤ ki, xi ∈ N0 i = 1, 2, ....,M

}

for t ≤ n and the outside option terms in equations 28 and 29 disappear. The index

set for the value function in period n is In(k1, k2, . . . , kM), which contains a single vector,

(k1, k2, . . . , kM). The optimal value function reduces to Vn(k1, k2, . . . , kM) = ln
(

n!
k1!k2!···kM !

e
∑M

i=1 kiUi

)
+

nγ, which is the formula stated in Theorem 1. The optimal policy stated for the canonical

model follows from inserting this value function in the general form of the optimal pol-

icy: max
j: kj>0

(Uj + εj + Vn−1(k1, k2, kj − 1, . . . , kM)). The latter is algebraically equivalent to

max
j: kj>0

(Vn(k1, k2, kj, . . . , kM)− ln(n) + ln(kj) + εj))= max
j: kj>0

(ln(kj) + εj)).

THEOREM 6

Proof. We recall that k∗1 ≥ k∗2 ≥ · · · ≥ k∗M must be true for the optimal n-pack of the

canonical model. An identical permutation argument (the one described in Theorem 4)

proves q∗1 ≥ q∗2 ≥ · · · ≥ q∗M must be true for the generalized model as well. To eliminate

the use of subscripts whenever possible, let q∗ = (q∗1, q
∗
2, . . . , q

∗
M), and let ej ∈ RM be the

standard unit basis vectors, i.e., e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0), etc. We will work

with the function exp (Vt(q
∗)) because it eliminates the logarithm in (13) and allows us to

work directly with the summation term. Observe that optimizing exp (Vt(q)) is equivalent

to optimizing Vt(q).

To prove the theorem, we argue by contradiction. Suppose there are indices i and j

where q∗j > k∗j and q∗i < k∗i for j < i. We will now show that the n-pack with q∗j − ej + ei

in the generalized model has greater expected utility than the �optimal� n-pack q∗. To do

so, observe that exp (Vt(q
∗)) and exp (Vt(q

∗ − ej + ei)) share many terms in common that

can be di�erenced out. Because t ≥ n, exp (Vt(q
∗)) has

∏M
l=1 (q∗i + 1) terms corresponding

to the di�erent of levels (0, 1, . . . , q∗l ) for each product alternative l (the outside option

can be thought of as providing �padding� for the di�erent combinations of products con-

sumed from the n-pack). Note that exp (Vt(q
∗ − ej + ei)) has more terms than exp (Vt(q

∗))

because q∗j > q∗i (q∗j > k∗j ≥ k∗i > q∗i ). In fact, a careful accounting of terms reveals

that exp (Vt(q
∗ − ej + ei)) and exp (Vt(q

∗)) share
(
q∗j
)∏

l 6=j (q∗l + 1) identical terms (corre-

sponding to identical consumption levels for all alternatives). However, exp (Vt(q
∗)) has∏

l 6=j (q∗l + 1) unique terms (those corresponding to the �xed level xj = q∗j in equation (13)),

whereas exp (Vt(q
∗ − ej + ei)) has

(
q∗j
)∏

l 6=j,i (q
∗
l + 1) unique terms (those corresponding to
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levels xi = q∗i + 1 and xj = 0, 1, . . . , q∗j − 1). Because q∗j > k∗j ≥ k∗i > q∗i , we must have

q∗j ≥ q∗i + 2 and so
(
q∗j
)∏

l 6=j,i (q
∗
l + 1) >

∏
l 6=j (q∗l + 1).

We now consider the di�erence exp (Vt(q
∗)) − exp (Vt(q

∗ − ej + ei)), which eliminates

the common terms. The unique terms for exp (Vt(q
∗)) can subsequently be paired with a

proper subset of of those from exp (Vt(q
∗ − ej + ei)) in such a way that the number of times

the outside option is used is identical between paired terms. Let xl represent the level of

alternative l (including l = 0) for the terms in exp (Vt(q
∗)), and let x′l represent the level

of alternative l for the terms in exp (Vt(q
∗ − ej + ei)). The matching we propose goes as

follows:

xl = x′l l 6= i, j; xj = q∗j ; xi = q∗i paired with x′l = xl l 6= i, j; x′j = q∗j − 1; x′i = q∗i + 1

xl = x′l l 6= i, j; xj = q∗j ; xi = q∗i − 1 paired with x′l = xl l 6= i, j; x′j = q∗j − 2; x′i = q∗i + 1

xl = x′l l 6= i, j; xj = q∗j ; xi = q∗i − 2 paired with x′l = xl l 6= i, j; x′j = q∗j − 3; x′i = q∗i + 1

etc.

Note that the number of times the outside option is selected is the same within each

pair because the number of products consumed from the n-pack is the same within each

pair. Also, whereas all the terms for exp (Vt(q
∗)) are paired o�, exp (Vt(q

∗ − ej + ei)) still

has additional positive terms that are unpaired. The general pair has the form xl = x′l l 6=
i, j; xj = q∗j ; xi = q∗i − z paired with x′l = xl l 6= i, j; x′j = q∗j − z − 1; x′i = q∗i + 1 for

z = 0, 1, . . . , q∗i . Now analyzing the di�erence in values for the general pair, we observe it

equals

e
∑

l 6=i,j xlUl∏
l 6=i,j xl!

[
eq
∗
jUje(q

∗
i−z)Ui

q∗j !(q
∗
i − z)!

− e(q
∗
j−z−1)Uje(q

∗
i +1)Ui

(q∗j − z − 1)!(q∗i + 1)!

]

=
e
∑

l 6=i,j xlUl∏
l 6=i,j xl!

e(q
∗
i−z)Uie(q

∗
j−z−1)Uj

(q∗i − z)!(q∗j − z − 1)!

 e(z+1)Uj

q∗j !

(q∗j−z−1)!

− e(z+1)Ui

(q∗i +1)!

(q∗i−z)!

.

 (30)

We can now show the term in brackets is non-positive. To do so, we will make use of the

optimality conditions of the canonical n-pack, which require

Max
j

(Uj − ln (kj + 1) , j = 1, ...,M) ≤Min
i

(Ui − ln (ki) , i = 1, ...,M) .

(This requires swapping i and j in equation (9)). Exponentiating the optimality condition

means, in particular, that the canonical n-pack must satisfy

eUj

k∗j + 1
≤ eUi

k∗i
,
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which implies
eUj

q∗j
≤ eUi

q∗i + 1
,

and thus

eUj

q∗j−1
≤ eUi

q∗i

eUj

q∗j−2
≤ eUi

q∗i−1

...

Multiplying the left hand sides of the �rst z+1 of these inequalities and then doing the same

for the right hand sides implies

e(z+1)Uj

q∗j !

(q∗j−z−1)!

≤ e(z+1)Ui

(q∗i +1)!

(q∗i−z)!

.

This implies the bracketed term in the di�erence equation (30) is always non positive.

Because exp (Vt(q
∗ − ej + ei)) has additional positive terms, this implies exp (Vt(q

∗)) <

exp (Vt(q
∗ − ej + ei)), which proves the theorem.

The following lemma is used in the proof of Theorem 7.

Lemma 1. Let ai ≥ 0, bi ≥ 0 for i = 0, 1, . . . , m. De�ne the index sets S+ = {i : ai > bi}
and S− = {i : ai ≤ bi}. Then if

∑
ai ≥

∑
bi, we must have

∑
βiai

i∈S+

+
∑
i∈S−

θiai ≥
∑
βibi

i∈S+

+∑
i∈S−

θibi for all 0 ≤ θi ≤ 1 , βi ≥ 1.

Proof. By the conditions of the lemma, we must have
∑
i∈S+

(ai − bi) ≥
∑
i∈S−
− (ai − bi) ≥ 0,

and so
∑
i∈S+

βi(ai − bi) ≥
∑
i∈S−
− θi(ai − bi), which is a re-arrangement of the stated result.

THEOREM 7

Proof. Without loss of generality we take U0 = 0. This means the additive constant appear-

ing in Vt is changed from tγ to t (γ + U0) (see equation (14)). We set λ = γ +U0 to simplify

notation. Moreover, we choose to work with exp [V (K)] and prove exp [Vt+1(K) + Vt−1(K)] ≤
exp [Vt(K) + Vt(K)]. The proof is by induction on the size of the n-pack.
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For n = 1, assume product j is the selected product. Then

exp (−2tλ) exp [Vt+1(K) + Vt−1(K)] =
(
1 + (t+ 1)eUj

) (
1 + (t− 1)eUj

)
= 1 + 2teUj + (t2 − 1)e2Uj

≤ 1 + 2teUj + (t2)e2Uj

= exp (−2tλ) exp [Vt(K) + Vt(K)]

Assume it is true for all packs K of size n − 1 or less. Observe that this means for any

integers t, j with t ≥ 1 and 0 ≤ j ≤ t− 1

exp [Vt(K)]

exp [Vt−1(K)]
≤ exp [Vt−j(K)]

exp [Vt−j−1(K)]
.

Thus for t > t′ and any integer k such that t− k ≥ t′ + k, we must also have

exp (Vt−k(K) + Vt′+k(K)) ≥ exp (Vt−k+1(K) + Vt′+k−1(K))

≥ exp (Vt−k+2(K) + Vt′+k−2(K)) (31)
...

≥ exp (Vt(K) + Vt′(K))

For any n-pack K = (k1, k2, . . . , kM), consider any product having a positive quantity.

Suppose j is one such product. De�ne K̂j = (k1, . . . , kj−1, 0, kj+1, . . . , kM). Observe that

K̂j must have n − 1 items or less. Because U0 = 0, we may write the value function (see

(14)) as

exp [Vt(K)] = exp (tλ)
∑

xi≤ki, i≥1

t!

(t−
∑M

i=1 xi)!

exp
(∑M

i=1 xiUi

)
∏M

i=1 xi!

= exp (tλ)

kj∑
z=0

∑
xi≤ki, i≥1, i 6=j

t!

(t− z −
∑M

i=1, i 6=j xi)!

exp (zUj) exp
(∑M

i=1, i 6=j xiUi

)
z!
∏M

i=1, i 6=j xi!

= exp (tλ)

kj∑
z=0

t!exp (zUj)

z!(t− z)!

∑
xi≤ki, i≥1, i 6=j

(t− z)!

(t− z −
∑M

i=1, i 6=j xi)!

exp
(∑M

i=1, i 6=j xiUi

)
∏M

i=1, i 6=j xi!
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= exp (tλ)

kj∑
z=0

t!exp (zUj)

z!(t− z)!
exp

(
Vt−z(K̂j)

)
exp ((z − t)λ)

=

kj∑
z=0

 t

z

 exp (z (Uj + λ)) exp
(
Vt−z(K̂j)

)
.

It follows that

exp [Vt+1(K) + Vt−1(K)] =

kj∑
z=0

kj∑
w=0

 t+ 1

z


 t− 1

w

 exp ((w + z) (Uj + λ)) exp
[
Vt+1−z(K̂j) + Vt−1−w(K̂j)

]
(32)

and

exp [Vt(K) + Vt(K)] =

kj∑
z=0

kj∑
w=0

 t

z


 t

w

 exp ((w + z) (Uj + λ)) exp
[
Vt−z(K̂j) + Vt−w(K̂j)

]
.

(33)

Consider the sets DL = {(z, w) : z + w = L}, where L is an integer, 0 ≤ L ≤ 2kj. If one

thinks of the (kj + 1) × (kj + 1) terms in the summations of (32) and (33) as elements of

a (kj + 1) × (kj + 1) matrix with rows z = 0, 1, 2, . . . , kj and columns w = 0, 1, 2, . . . , kj,

then the set DL corresponds to those elements running diagonally from the lower left to the

upper right. It is enough to show that for each of these (2kj + 1) sets the terms in equation

(33) exceed those in equation (32). After dividing out the term exp (L (Uj + λ)) in both (32)

and (33), we must show

L∑
l=0

 t

L− l


 t

l

 exp
(
Vt−L+l(K̂j)

)
exp

(
Vt−l(K̂j)

)

≥
L∑
l=0

(
t+ 1

L− l

)(
t− 1

l

)
exp

(
Vt+1−L+l(K̂j)

)
exp

(
Vt−1−l(K̂j)

)
(34)

The exponential product terms appear in both sums with one exception: the last term

(l = L) in the right hand sum, i.e. exp
(
Vt+1(K̂j)

)
exp

(
Vt−L−1(K̂j)

)
. We can replace this
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term by its upper bound exp
(
Vt(K̂j)

)
exp

(
Vt−L(K̂j)

)
(by the induction hypothesis (31))

and prove the resulting (stronger) inequality still holds. With this replacement in mind, we

combine the coe�cients corresponding to identical exponential terms on each side of (34).

We will use a's to represent the combined coe�cients for the left hand side of (34), and we

will use b's to represent coe�cients for the right hand side.

For L even, set m = L
2
and de�ne the coe�cients

ai =



2

 t

L− i

 t

i

 i = 0, 1, . . . , m− 1

 t

m

 t

m

 i = m

bi =



 t+ 1

1

 t− 1

L− 1

+

 t− 1

L

 i = 0

 t+ 1

L+ 1− i

 t− 1

i− 1

+

 t+ 1

i+ 1

 t− 1

L− 1− i

 i = 1, . . . , m− 1

 t+ 1

m+ 1

 t− 1

m− 1

 i = m

For L odd, setm = bL
2
c where bxc is the largest integer less than x. De�ne the coe�cients

ai = 2

(
t

L− i

)(
t

i

)
= i = 0, 1, . . . , m
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bi =



 t+ 1

1


 t− 1

L− 1

+

 t− 1

L

 i = 0

 t+ 1

L+ 1− i


 t− 1

i− 1

+

 t+ 1

i+ 1


 t− 1

L− 1− i

 i = 1, . . . , m

For both L even and L odd, the coe�cients ai and bi, in their respective (left hand side

and right hand side) summations, are the (combined) coe�cients of the exponential term

exp
(
Vt−i(K̂j)

)
exp

(
Vt−L+i(K̂j)

)
for i = 0, 1, 2, . . . , m. Recall that the value exp

(
Vt+1(K̂j)

)
exp

(
Vt−L−1(K̂j)

)
in the right hand sum of (34) has been replaced with the (larger) term exp

(
Vt(K̂j)

)
exp

(
Vt−L(K̂j)

)
for the calculation of b0. This means

m∑
i=0

aiexp
(
Vt−i(K̂j)

)
exp

(
Vt−L+i(K̂j)

)
=

L∑
l=0

 t

L− l


 t

l

 exp
(
Vt−L+l(K̂j)

)
exp

(
Vt−l(K̂j)

)
(35)

but
m∑
i=0

biexp
(
Vt−i(K̂j)

)
exp

(
Vt−L+i(K̂j)

)
≥

L∑
l=0

(
t+ 1

L− l

)(
t− 1

l

)
exp

(
Vt+1−L+l(K̂j)

)
exp

(
Vt−1−l(K̂j)

)
(36)

We now show

m∑
i=0

aiexp
(
Vt−i(K̂j)

)
exp

(
Vt−L+i(K̂j)

)
≥

m∑
i=0

biexp
(
Vt−i(K̂j)

)
exp

(
Vt−L+i(K̂j)

)
(37)

It is straightforward to show that a0 ≤ b0. It is also straightforward to show am > bm. For
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i = 1, . . . , m− 1, we have

ai − bi =

(
t

L− i

)(
t

i

)[
2− t+ 1

t

(
i

L+ 1− i
+
L− i
i+ 1

)]
. (38)

The function g(x) = x
L+1−x+L−x

x+1
appearing in the bracketed term of (38) is strictly decreasing

for 0 ≤ x ≤ m− 1. For any given t, the function 2− t+1
t
g(x) is therefore strictly increasing

in x. Consequently, there is an index 0 < m∗ ≤ m such that ai − bi > 0 for i ≥ m∗ and

ai − bi ≤ 0 for i < m∗. De�ne

θi =
exp

(
Vt−i(K̂j)

)
exp

(
Vt−L+i(K̂j)

)
exp

(
Vt−m∗(K̂j)

)
exp

(
Vt−L+m∗(K̂j)

) i = 0, 1, . . . , ,m∗ − 1

and

βi =
exp

(
Vt−i(K̂j)

)
exp

(
Vt−L+i(K̂j)

)
exp

(
Vt−m∗(K̂j)

)
exp

(
Vt−L+m∗(K̂j)

) i = m∗, m∗ + 1, . . . , m.

By the induction hypothesis (31), these ratios must satisfy the conditions for θi and βi stated

in lemma 1. Moreover, by the construction of the coe�cients ai and bi we must have

m∑
i=0

ai =
L∑
l=0

(
t

L− l

)(
t

l

)
m∑
i=0

bi =
L∑
l=0

(
t+ 1

L− l

)(
t− 1

l

)
. (39)

Recall the well known Vandermonde Identity (see H.W. Gould, 1956, 1972):

r∑
q=0

(
x

q

)(
y

r − q

)
=

(
x+ y

r

)
.

Applying this to each of the sums in (39) we observe

m∑
i=0

ai =
L∑
l=0

(
t

L− l

)(
t

l

)
=

(
2t

L

)
m∑
i=0

bi =
L∑
l=0

(
t+ 1

L− l

)(
t− 1

l

)
=

(
2t

L

)
.

The conditions of lemma 1 are met and therefore
∑m∗−1

i=0 θiai +
∑m

i=m∗ βiai ≥
∑m∗−1

i=0 θibi +
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∑m
i=m∗ βibi. Multiplying both sides of this inequality by the term exp

(
Vt−m∗(K̂j)

)
exp

(
Vt−L+m∗(K̂j)

)
yields the inequality (37) and the theorem is proved.

Appendix B (Numerical Experiments)

We assume there are n alternatives to choose from, thus permitting maximum variety (i.e.,

a pack with one unit of each alternative). Without loss of generality, alternative 1 is the

consumer's favorite (in expectation), alternative 2 is their second favorite and so on, which

means U1 ≥ U2 ≥ · · · ≥ Un. The indices for the consumer (k) and the consumption time (t)

are suppressed. The cdf for alternative i 's error εi is Fi and its density is fi.

The probability that the consumer chooses item i is

P (i) = Prob {Ui + εi ≥ Uj + εj ∀j, j 6= i} ,

which implies the marginal choice probability

P (i) =

∞̂

−∞

∏
j 6=i

Fj (Ui − Uj + ε) fi(ε)dε. (40)

We will have frequent occasion to calculate the expected value of the maximum of random

variables having the general form Xi = ci + εi for i ∈ A ⊆ {1, 2, 3 . . . , n}. The cdf GA(t) for

max
i∈A
{Xi} is

GA(t) = Prob

(
max
i∈A
{Xi} ≤ t

)
=

∏
i∈A

Fi(t− ci), (41)

and so the expected value can be calculated as

E

(
max
i∈A
{Xi}

)
=

∞̂

−∞

tG′A(t)dt. (42)

The dynamic programming formulation requires that we build the value function for larger
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packs from the values for smaller packs, e.g., to calculate the value for (2,1,0) we must �rst

know the values for (2,0,0) and (1,1,0). This is accomplished using n nested loops organized

in a particular fashion. The outermost loop corresponds to the most attractive alternative

(alternative 1), the second outermost loop to the second favorite (alternative 2), and so on.

Letting ki represent the index for each alternative, the outermost loop uses k1 = 0, 1, 2 . . . , n;

the next loop uses k2 = 0, 1, 2 . . . n − k1; the third loop uses k3 = 0, 1, 2 . . . n − k1 − k2 and
so on. The innermost loop uses kn = 0, 1, 2 . . . n − k1 − k2 − · · · − kn−1. Calculating the

value function for each j -pack (j ≤ n) using this nested structure ensures the values for the

required smaller packs have been calculated prior to the computation of the larger packs that

build upon them. One can show that there are exactly

(
2n− 1

n

)
possible n-packs, but a

total of

(
2n

n

)
optimal values must be calculated to account for all the smaller sub-packs

(0-packs, 1-packs, 2-packs, etc.) used in the valuation build up.

The optimal policy for any n-pack is simply to select the alternative that maximizes

current utility plus expected utility to go. For an n-pack having alternatives i ∈ A, the

expected value of following this optimal policy is obtained by calculating the expectation

of max
i∈A
{V (k1, . . . , ki−1,ki − 1, ki+1, . . . , kn) + Ui + εi}, which can be done numerically us-

ing equations (41) and (42) with ci = V (k1, . . . , ki−1,ki − 1, ki+1, . . . , kn) + Ui. This is the

procedure we coded in MATLAB.

We consider three distributions for the error term: a standard uniform U [0, 1], a stan-

dard normal N(0, 1), and a standard Gumbel, whose cdf is F (t) = e−e
−t
. Using standardized

distributions imposes no restriction on our experimental outcomes; it merely selects a par-

ticular scale (all other scales could be mapped to it), and a particular location, which could

be obtained through a suitable shift in each Ui. These scale and location parameters have

no impact on the ordering of n-pack values.

3-Packs

Our previously noted laboratory experiment involving 168 business students (107 BBA, 61

MBA) provided motivation for our �rst numerical experiment. Students' self-reported selec-

tion frequencies (choice probabilities) for their three favorite snacks (favorite, second favorite,

third favorite) were obtained via a Qualtrics survey. Half of the students (84) selected choice

frequencies that fell into one of six scenarios: (50%, 30%, 20%) (32 students); (40%, 40%,

20%) (15 students); (50%, 25%, 25%) (10 students); (60%, 30%, 10%) (9 students); (40%,

30%, 30%) (9 students); (60%, 20%, 20%) (9 students). (Note: 8 students choose our hy-
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Table 1: Computed Utility Parameters for 3-Packs using Uniform (U) and Normal (N)
Scenario U1(U) U2(U) U3(U) U1(N) U2(N) U3(N)

A (50%, 30%, 20%) 1.4125 1.2857 1.1964 .5202 .1013 -.1982
B (40%, 40%, 20%) 1.0933 1.0933 .9368 .2516 .2516 -.2768
C (50%, 25%, 25%) 1.1457 .9775 .9775 .3835 -.1730 -.1730
D (60%, 30%, 10%) 1.2310 1.0500 .8197 .4900 -.0957 -.8602
E (40%, 30%, 30%) 1.1803 1.1136 1.1136 -.0257 -.2545 -.2545
F (60%, 20%, 20%) .27345 0.0000 0.0000 .88518 0.0000 0.0000

pothetical case (33.33%, 33.33%, 33.33%) used in §3.4.) For each of these six scenarios,

we calculated parameters U1, U2, U3 that produced the scenario's choice probabilities. For

Gumbel distributed errors, this could be done by simply setting Ui = ln(ωi) where ωi is the

scenario's choice frequency for alternative i. For the uniform and normal distribution, we

calculated U1, U2, U3 using equation (40) and a simple weighted least squares optimization

model where the ωi served as targets. All values are unique up to an additive shift. The

results are given in Table 1.

There are ten possible 3-packs, and optimal values were computed for each of these

ten 3-packs using the three error distributions and the six scenarios. Each combination

of a distribution and a scenario is summarized by a a vector having ten values, one for

each possible 3-pack. While the scales and spacings were di�erent for each vector, there

was extraordinary agreement in how the three vectors valued these 3-packs. Indeed, the

correlation coe�cient between the Gumbel vector and the normal and uniform vectors was

over .9985 in all six scenarios, averaging .9995. There were some minor di�erences. In

scenarios B, C and D and F, the Gumbel included several ties that were not obtained using

the normal and uniform distribution. In scenario B, the Gumbel produced a three-way tie

between (2,1,0), (1,2,0) and (1,1,1) for the highest value, whereas the normal and uniform

produced a two-way tie between (2,1,0) and (1,2,0) and assigned (1,1,1) to the third highest

value. Similarly, in scenario C, the Gumbel produced a three-way tie between (2,1,0), (2,0,1)

and (1,1,1) for the highest value, whereas the uniform and normal produced a two-way tie

between (2,1,0) and (2,0,1) for the highest value and assigned (1,1,1) to the third spot.

In scenario D, the Gumbel produced a tie between (2,0,1) and (1,1,1) for the 4th spot,

whereas the uniform and normal split these into (2,0,1) (4th spot) and (1,1,1) (5th spot).

In scenario F, both the Gumbel and normal produced a two-way tie between (2,0,1), (2,1,0)

for the top spot and assigned (3,0,0) to the third spot, whereas the uniform choose (3,0,0)

for the top spot with (2,1,0) and (2,0,1) tied for the second spot. All of the aforementioned

discrepancies involved minute di�erences in the value functions (approximately 1.2% of the

range in values), but it was more than could be attributed to numerical error. Overall, values
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obtained using the Gumbel distribution were highly representative of what we would expect

to obtain for the uniform and normal error distributions.

6-packs

We repeated the foregoing experiment on 6-packs. Since we did not have experimental data

(choice frequencies) from students in this case, we simulated six choice frequencies using

six random draws Xi from a uniform distribution on [0,1]. The choice frequencies f(i)

were then calculated using f(i) =
∏i

l=1Xl∑6
l=1

∏i
l=1Xl

, which ensured f(1) ≥ f(2) ≥ · · · ≥ f(6)

and
∑6

i=1 f(i) = 1. One hundred scenarios were simulated, and these ran the gamut from

broadly distributed (24%, 18.3%, 17.2%, 16.8%, 14.4%, 8.9%) all the way to highly skewed

(98% for choice 1, 1.9% for choice 2). In contrast to the previous experiment, many of these

scenarios had a high number of low frequency alternatives (63 scenarios had at least one

choice frequency below 1%).

As before, the f(i) for each scenario became targets in an optimization framework to

calibrate utility parameters (for the uniform and normal) so that each distribution's choice

probabilities matched the f(i) to within 5 digits. These utility parameters were then used

to calculate the values for all 462 possible 6-packs under each error distribution, resulting

in a 462 dimensional vector of values for each scenario and each distribution. The average

correlation between the Gumbel valuation vector and the uniform valuation vector slipped

to .971, whereas the correlation between the Gumbel and normal valuation vectors remained

nearly the same at .992. Upon examining the results, it became apparent that the results

were impacted by the large number of scenarios having one or more low frequency alterna-

tives. These scenarios produced notably lower correlations, the lowest of which, scenario 94,

produced a .851 correlation between the Gumbel and uniform valuations (but .943 between

the Gumbel and normal). In scenario 94, the three lowest choice frequencies were .0003,

.000049, and .0000007. In the Gumbel model, where the utilities are calculated using the

formula Ui = ln(f(i)), low choice frequencies are mapped into much lower utilities and thus

very low valuations for packs that include them (note that if any f(i) → 0, the Gumbel

valuation goes to −∞). In contrast, the utility parameters for the uniform distribution are

bounded in an interval of length 1 and all of its 6-pack valuations are bounded as well. This

means packs including low frequency alternatives are compressed by the uniform model and

receive higher valuations compared to the Gumbel model (and, as might be expected, the

normal model). If valuations are limited to packs consisting of higher probability alterna-

tives, these value distortions disappear. For example, in scenario 94, if one eliminates those
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packs including one or more of the three lowest choice frequencies, the correlation between

the remaining Gumbel and uniform valuations jumps to .995. In sum, we �nd that valu-

ations for packs that are likely to be selected (i.e., attractive to a consumer) remain very

highly correlated in all three models. Distortions between the Gumbel and uniform (and

between the normal and uniform) occur in packs including one or more very low probability

alternatives. Since optimization of n-packs implicitly ignores such packs, we would expect

these distortions, when they occur, to have no meaningful impact on our results.
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