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A Model of Multi-Store Shoppers’ Buying Decisions 
 
 
 

Abstract 
We propose an analytical model of multi-store shoppers buying items from their shopping lists; 
specifically, “common items” that are available at competing stores. Multi-store shoppers buy 
some common items at the first store they visit, others are deferred to a competing store. These 
buying decisions depend on the prices observed at the first store and uncertainty about savings if 
purchases are deferred to a competing store. Analysis of our model shows that, if multi-store 
shoppers enjoy psychological benefits (in addition to rational economic benefits) from saving 
money, their purchase decisions depend on the ratio of expected savings to the variance in 
savings. If multi-store shoppers are motivated only by rational economic benefits, however, their 
purchase decisions depend on expected savings alone. To demonstrate empirically that some 
multi-store shoppers are motivated by psychological benefits, we develop a finite mixture model 
capable of capturing heterogeneity in shoppers’ response to price savings. Using actual purchase 
data, we demonstrate that a substantial proportion of multi-store shoppers (38% in our sample) 
enjoy psychological benefits, in addition to rational economic benefits, from saving money. Our 
findings imply that retailers can affect where multi-store shoppers buy by pricing in a way that 
reduces or increases uncertainty about price savings. Thus, our analysis provides a new 
perspective on the connection between retail pricing and multi-store shopping behavior.  
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1. Introduction 
 
Consider a grocery shopper’s purchase decisions. She goes shopping to buy certain items, which 

are usually recorded on a shopping list (Spiggle 1987, see Kahn and McAlister 1997, pp.118-9, 

for a discussion of shopping lists).  Given that shopping list, store choice models assume that the 

shopper visits whichever store minimizes her total cost of shopping; i.e., the cost of travel and 

inconvenience plus the expected prices of items on the list (Bell, et al. 1998, Briesch, et al. 

2009). But a multi-store shopper decides to buy the items on her shopping list at more than one 

store.1 Some are exclusive items available at only one store, but most are common items available 

at multiple stores.  At the first store a multi-store shopper visits, she must decide which common 

items to buy and which to defer buying until she visits another store. The implication is that the 

multi-store shopper compares common item prices observed at the first store with prices 

anticipated at another store and will presumably defer buying only if the prices at the second 

store are anticipated to be lower. 

The presumption that multi-store shoppers will buy items at the store offering lower 

prices is consistent with rational economic behavior. However, evidence suggests that related 

factors affect buying decisions.   

• First, multi-store shoppers often encounter substantial price variation between grocery 
stores. Fox and Hoch (2005) found an average price difference of 10% between 
competing retailers for common items (p. 46). Given the frequency of grocery shopping 
and multi-store shoppers’ propensity to plan their trips and purchases (cf. Urbany, et al. 
1991; Urbany et al. 2000; Fox and Hoch 2005; Talukdar, et al. 2010), we would expect 
multi-store shoppers to be aware of these price differences and to take advantage of them. 
However, the empirical data used in this paper (details about the dataset are in §4.1) show 
that shoppers who visit both of the leading grocery retailers in the Chicago market on the 
same day buy common items at the low price only 67.2% of the time. It is surprising that 

                                                
1 The implication that multi-store shopping trips are pre-planned, rather than the decision to visit more than one store 
being made during the shopping trip, is supported empirically by Fox and Hoch (2005) and Talukdar, et al. (2010).   
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multi-store shoppers do not buy at the low price more often, given that most prior 
research assumes that the objective of multi-store shopping is to search for deals.  

• Second, our empirical data (again, see §4.1 for details) show that if the first store that a 
shopper visits offers a price that is less than or equal to the second store’s price, then the 
shopper buys at that low price 76.9% of the time. If, on the other hand, the first store that 
a shopper visits does not offer the low price (i.e., its price is higher than the price offered 
at the second store) then the shopper buys at the low price only 55.8% of the time.2 This 
analysis suggests that the order in which multi-store shoppers visit stores affects the 
probability of buying at the low price.  

1.1. Research Overview and Contribution  

To account for these putative anomalies, we propose an analytical model for the buying decisions 

of shoppers who visit two grocery stores in order to predict whether multi-store shoppers buy 

common items at the first store they visit or defer purchase to the second store. Our model 

incorporates the uncertainty inherent in deferral decisions having observed prices only at the first 

store. Our model also accommodates systematic deviations from rational economic behavior by 

recognizing that shoppers may enjoy psychological benefits from saving money. This is 

consistent with several theories of the psychology of shopping, including transaction utility 

(Thaler 1985), smart-shopper feelings (Schindler 1989, 1998) and market mavenism (Feick and 

Price 1987). While we do not advocate for any particular theory per se, we observe that they all 

imply that shoppers may derive utility from saving money beyond the economic value of that 

savings. Our analysis results in a surprisingly simple and parsimonious specification for the 

utility of multi-store shoppers. If these shoppers enjoy psychological (in addition to economic) 

benefits from saving money, we prove that the decision to defer purchase of common items to 

the second store depends on a simple ratio of expected savings to the variance of savings.3 The 

                                                
2 These proportions are different (z-value=7.04, p-value<=0.0001). Note that multi-store shoppers make only 57.0% 
of their purchases at the first store visited.  
3 More precisely, it increases according to an approximately piecewise-linear sigmoidal function of this ratio. 
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implication is that uncertainty about prices at the second store affects multi-store shoppers who 

enjoy the psychological benefits of saving money differently from those who do not. 

Observe that we assume multi-store shoppers visit two stores. While this assumption 

admittedly simplifies our analytical arguments, it is also consistent with time-constrained 

shopping (Morgan and Manning 1985) and retail duopoly markets; moreover, it has very strong 

empirical support.4 It is important to note that, for our purposes, we are not interested in why the 

shopper visits both stores--she may be motivated to find bargains (Fox and Hoch 2005) but she 

may also be buying each store’s exclusive products and/or taking advantage of each store’s 

category-specific offerings (Briesch, et al. 2013).  

We provide an empirical demonstration of the proposed model by developing a finite 

mixture specification capable of capturing heterogeneity in shoppers’ responses to price savings. 

This specification is estimated using actual purchase data from a panel dataset of shopping trips 

and item purchases in the Chicago market.5 We demonstrate that a substantial proportion of 

multi-store shoppers (38% in our sample) are driven by the psychological benefits, in addition to 

the economic benefits, of saving money. Taken together, our analytical and empirical results 

represent a new perspective on the connection between retail price competition and the purchase 

decisions of multi-store shoppers. They suggest that retailers could increase sales among multi-

store shoppers by matching the timing and depth of competitor discounts for items that the 

retailer generally prices below competition (thereby reducing the variance of price savings) while 

                                                
4 The vast majority of multi-store shopping trips appear to involve two stores. Fox and Hoch (2005) found that, in 
99% of cases in which shoppers visited multiple grocery stores on a single day, they visited exactly two stores. 
Talukdar, et al. (2010) found that 98% of shoppers’ total grocery expenditures are made at their two most frequently 
visited stores. 
5 Our empirical application requires us to identify multi-store shopping visits (see Carlson and Gieseke 1983, Dreze 
1999, Fox and Hoch 2005 and Talukdar, et al. 2010 for different approaches to identifying multi-store shopping in 
panel data) and we must be careful to distinguish multi-store shopping from store switching (e.g., Rhee and Bell 
2002).  
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discounting independent of competitors for items that the retailer generally prices above 

competition.  

1.2. Organization 

The remainder of the paper is organized as follows. We begin by discussing the relevant 

literature in §2. In §3, we introduce and develop a mathematical framework for analyzing multi-

store purchasing behavior, resulting in two testable propositions. With a view toward testing 

these propositions, we formulate an empirical model of multi-store purchasing in §4. There we 

also describe the dataset used to demonstrate the analytically-derived propositions, develop a 

constrained latent mixture model, and report the empirical results. In §5, we discuss our findings 

and conclude with limitations and suggested topics for future research. 

2. Literature Review 

Shoppers who visit multiple stores have long been of interest to both researchers and 

practitioners. There is ample evidence that multi-store shopping is pervasive and that it 

materially affects retailer sales and profitability. For example, Fox and Hoch (2005) found that 

13.2% of all grocery store visits are made by shoppers who also visit a competing grocery store 

on the same day. On these visits, multi-store shoppers pay higher prices at their “primary” stores 

compared to the other, or “secondary” stores, that they visit. Talukdar, et al. (2010) found that 

the “opportunists” shopper segment--35.5% of shoppers in their sample--“regularly shop and 

split their purchases between primary and secondary stores” (p. 347). Moreover, Talukdar and 

colleagues found that “opportunists” are generally less profitable for retailers than the average 

shopper. Food Marketing Institute’s U.S. Grocery Shopper Trends 2010 (2010) reported that 

nearly a third of shoppers compare prices across stores and nearly half visit multiple stores to 

find bargains. Food Marketing Institute also reported that shoppers are spending less at their 
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primary grocery store, increasingly buying food and packaged goods at other stores and retail 

formats.  

Three existing literature streams are particularly relevant to multi-store shopping: 

marketing researchers have studied cherry-picking, or shopping for bargains across stores; 

economists have considered models of sequential search for grocery products; and social 

psychologists have discussed the psychological (i.e., non-economic) benefits of saving money. 

2.1. Cherry-Picking  

A number of recent studies have investigated cherry-picking--shopping for bargains across 

stores--focusing on who cherry-picks, how much they cherry-pick and how retailers’ pricing and 

store location decisions affect cherry-picking behavior. Note that the term “cherry-picking” 

implies that the motivation for multi-store shopping is to buy at a lower price; as we will explain 

in §3, our model of multi-store shopping allows for other motivations as well. 

Cherry-picking has been used in game theoretic models of the retailer/shopper 

interaction. For example, Lal and Rao (1997) developed a model that segments shoppers into 

those who are time constrained and those who cherry-pick. Dreze (1999) analyzed a segment of 

shoppers who are price sensitive with low travel costs and so can be induced to cherry-pick by 

retailer price deals. Both studies argue that cherry-pickers will travel to multiple stores to take 

advantage of price deals because of their low opportunity cost of time. Moreover, cherry-picking 

shoppers are generally assumed to be less profitable than other shoppers for retailers.  

Other cherry-picking studies have taken a more empirical approach. Fox and Hoch 

(2005) found that cherry-picking is materially important for retailers, with an average of 13.2% 

of a store’s visitors cherry-picking on any given day (p. 50). The authors found that at the 

shopper’s primary store, she i) makes the large majority of her purchases, ii) pays higher prices 
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on average, and iii) is less likely to secure bargains. As a result, the primary store is not 

adversely affected by cherry-picking as much as the secondary store. Fox and Hoch also found 

evidence that cherry-picking trips are planned, with more than twice as much spent on such trips 

compared to single-store shopping trips. In terms of demographics, cherry-picking behavior was 

found to be positively associated with household size, home ownership and senior citizenship, 

but negatively associated with working adult females and income. The authors also found that, 

depending upon the shopper’s wage rate, cherry-picking is economically rational behavior for a 

substantial proportion of households. 

Talukdar, et al. (2010) investigated the profit impact of extreme cherry-picking on 

retailers, where extreme cherry-pickers were defined as those who generated a negative profit 

contribution at their secondary store--2.1% of shoppers were found to generate such a negative 

contribution. While cherry-picking behavior was not measured directly, the authors divided 

households into i) regular, ii) occasional and iii) rare cherry-pickers. They found that the first 

two segments are more motivated to search and believe they are better at price search than 

shoppers who rarely cherry-pick. Interestingly, the authors found that a household’s opportunity 

cost of shopping is not monotonically related to its profit contribution at the secondary retailer. 

Gauri, et al. (2008) decomposed shoppers’ price search into two strategic dimensions: i) 

across stores and ii) across time within a store (search strategies were self-reported). The cross-

store dimension is consistent with cherry-picking. The authors found that shoppers’ opportunity 

costs are negatively related to both dimensions of price search. They also found that shoppers 

who principally engage in cross-store price search (cherry-picking) realize roughly the same 

savings as those who engage in temporal price search but are substantially less profitable for 

retailers. Interestingly, the authors measured shoppers’ self-perceptions of market mavenism and 
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search skills, finding that both are positively related to the two dimensions of price search 

(including cherry-picking) and to shoppers’ savings from price search. These mavenism and 

perceived search skill findings suggest that psychological factors may affect search behavior and 

consequently support the inclusion of psychological benefits in our model of multi-store 

shopping behavior.  

2.2. Grocery Store Price Search 

In economics, there have been several studies of the search for information about frequently 

purchased goods across grocery stores (e.g., Stigler 1961). These studies assumed sequential 

search for a predetermined list of goods to be purchased. Burdett and Malueg (1981) proposed a 

model of sequential search across stores to purchase multiple goods. Their analysis linked the 

search for multiple goods (where the price of each good at each store is randomly drawn from a 

known distribution that is common to all stores) to the search for a single good. The authors 

found that, as with a single good, multiple goods have threshold prices. If the price of any item at 

the current store is below that threshold, then it should be purchased; otherwise, the shopper 

visits another store. Threshold prices depend on the known distribution of prices for each good. 

The authors focused on the search for two goods and considered two specific cases--with and 

without recall. In the latter case, the consumer cannot return to stores visited previously without 

incurring a cost (this approximates the problem that grocery shoppers face). Carlson and McAfee 

(1984) extended Burdett and Malueg’s analysis from 2 to n different goods. Compared to these 

models, we: 1) assume that multi-store shoppers visit a fixed sample size of two stores, 

consistent with time-constrained shopping; 2) allow prices at the two stores to have different 

distributions; and 3) generalize the cost minimization objective function commonly specified in 

optimal price search (Maier 1990) to include psychological benefits from saving money. 
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Carlson and Gieseke (1983) tested hypotheses from these sequential search models using 

panel data. They found that shoppers with lower search costs tend to visit more stores and pay 

lower prices; however, they also found decreasing benefits to search. Carlson and Gieseke’s 

study was the first to provide empirical support for grocery store search theory using actual 

purchase data. Subsequent studies found that the extent of search across grocery stores is 

negatively related to shoppers’ opportunity cost of time, using variables such as wage rate and 

income (Marmorstein, et al. 1992; Ratchford and Srinivasan 1993). Petrevu and Ratchford 

(1997) found that the economic benefits of search, which depend on price dispersion and per 

capita income, are positively related to the amount of search. They also found that the costs of 

search, including opportunity cost of time and perceived costs such as time pressure, difficulty in 

comparing stores, and lack of physical energy are negatively related to the amount of search. 

Urbany, et al. (1991) and Urbany, et al. (2000) used survey data to investigate price 

search and multi-store shopping for groceries, developing a detailed behavioral profile. Among 

other findings, they reported that:  

I. 22%-24% of consumers regularly shop at multiple stores, 

II. 25% shop other than their principal store to get advertised specials, 

III. 42% of shoppers compare prices across stores at least once per month, 

IV. 19% regularly shop specials at multiple stores, and 

V. 57%-80% of shoppers read fliers to compare prices across stores. 

2.3. Psychological Benefits of Saving Money 

We now briefly review theories predicting that people may enjoy psychological benefits from 

saving money. Common to all of these theories is the implication that saving money offers 

shoppers psychological benefits, in addition to the economic value of the item(s) purchased.  

• Thaler (1985) argued that shoppers derive utility in proportion to the amount they pay 

below their reservation price, which he termed acquisition utility, while deriving 
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additional utility from paying less than they expected to pay, which he termed transaction 

utility. Transaction utility thus represents the psychological benefit from getting a 

bargain, independent of the economic benefit inherent in the purchase.  

• Schindler (1989, 1998) proposed that “smart-shopper feelings” are an emotional 

consequence of finding bargains. Smart-shopper feelings are self-perceptions of one’s 

shopping prowess. They “involve a sense of efficacy and competence” (Schindler 1989, 

p. 449) as well as “pleasure in beating the system” (Schindler 1989, p. 450). Because 

smart-shopper feelings are pleasurable emotions, this theory explains extreme bargain 

hunting behavior as an emotional dependency. Schindler (1998) determined that, if 

shoppers attribute bargain purchases to themselves (i.e., their own effort or acumen), then 

they are more likely to share information about the bargain purchase with others and to 

buy again. Thus, he found a relationship between smart-shopper feelings and post-

purchase behaviors. Prelec and Bodner (2003) suggested that smart-shopper feelings 

might act as a type of diagnostic utility, a signal that the individual knows more than 

other shoppers. 

• Feick and Price (1987) introduced the related idea of market mavens, consumers who 

purposefully gather information about markets, stores, products and prices. The authors 

argued that market mavens benefit by sharing that information with other consumers. 

Feick and Price found that, across product types, mavenism is correlated with coupon 

usage and, more importantly, with shopping enjoyment. The former finding suggests that 

market mavens may seek bargains more than other shoppers do. Together, their findings 

suggest that market mavens derive psychological benefit (i.e., enjoyment) from shopping 

and saving. 

• Rick, et al. (2007) proposed a theory that reflects individual differences in the pain of 

paying for goods. “Tightwads” feel more pain and consequently spend less than their own 

rational analysis would dictate, while “spendthrifts” feel less pain and so spend more than 

they would like. Across several large samples, the authors found that about 24% of 

people are tightwads, for whom the pain of paying for goods leads to less spending than 

they would rationally prefer. In related work, Lastovicka, et al. (1999) developed and 

measured the construct of “frugality.” While tightwads are driven by pain induced by 
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spending, frugal shoppers are driven, in part, by good feelings induced by saving. Both 

studies, however, imply a psychological benefit due to saving (or not spending) money. 

• Additional evidence that consumers derive psychological benefits from saving money 

comes from work on the hedonic and utilitarian benefits of promotions (Chandon, et al. 

1999) and from surveys that show that highly deal-prone consumers get a sense of 

achievement from buying items on special (Garretson and Burton 2003). 

3. Analytical Model 

We now develop a formal analytical model of the multi-store shopper’s buying decisions for 

common items. Before embarking on trip t, the shopper compiles a shopping list of common 

items 𝑖 = 1,2,⋯ ,𝑛, along with purchase quantities 𝑞!! , 𝑞!! ,⋯ , 𝑞!" of each item. Purchase 

quantities are treated as exogenous and fixed. There are two retailers from which the items can 

be purchased. The order in which the retailers are visited is important, as discussed in §1. On trip 

t, the first retailer visited, denoted Retailer 1, offers a vector of stochastic prices 𝑝!
(!) =

𝑝!!
(!),𝑝!!

(!),⋯ ,𝑝!"
(!) . The second retailer visited, denoted Retailer 2, offers a possibly different 

vector of stochastic prices 𝑝!
(!) = 𝑝!!

(!),𝑝!!
(!),⋯ ,𝑝!"

(!) . Prices at the two retailers may be 

correlated. For clarity of exposition, we say that both store visits take place during the same 

shopping trip, although the store visits could just as easily take place on separate trips. 

The decision regarding where to buy the common items on the list is based on the buyer’s 

knowledge of price differences between the two retailers for those items, reflecting the possible 

savings. In choosing to visit both retailers, the shopper incurs a fixed cost k )0( >k  associated 

with the purchase of common items at the second retailer. This fixed cost may include the direct 

cost of travel and indirect cost of time spent shopping. However, the customer may have 

independent motives for visiting the second store that offset or nearly eliminate any fixed cost 

associated with purchasing common items. For example, if Retailer 2 carries exclusive items or 
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offers attractive assortments in categories of interest, then the customer might choose to visit the 

second store regardless of potential savings on common items. In this case, all travel costs would 

be treated as sunk costs, so the fixed cost associated with purchasing common items would be 

nearly 0. In other cases, the shopper may be motivated to visit the second store solely save 

money on common items, in which case k  would include all costs associated with the store visit.   

To describe the shopper’s situation in more detail, we introduce the decision vector 

λ! =    λ!! , λ!! ,⋯ , λ!" , where component  is the proportion of item i purchased at Retailer 2 

on trip t. Observe that we do not require  to be binary, a relaxation that facilitates our analytic 

arguments. The elements of the decision vector and their interpretation will be discussed in 

greater detail once our model is formally proposed. The shopper may consider two criteria when 

making deferment decisions: the expected savings from purchasing deferred items at Retailer 2 

and the probability of realizing a savings by deferring purchases. The first criterion reflects the 

magnitude and sign, positive or negative, of expected savings from deferring purchases to 

Retailer 2. The second criterion allows the shopper to enjoy psychological benefits from saving 

money that are not proportional to the magnitude of the savings but instead depend on whether a 

savings is realized. We will show that placing a positive weight versus zero weight on the 

probability of realizing a savings leads to a fundamentally different utility function.  

Exhibit 1 summarizes the notation that we use in our analytic model. 

Place Exhibit 1 about here 

3.1. The Rational Economic Benefits (REB) Shopper 

For the first case, we assume that the shopper derives utility only from the rational economic 

benefits (REB) of saving money. In other words, the shopper’s disutility is increasing in price, so 

the deferment decision depends on expected savings. The REB shopper does not derive 

itλ

itλ
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psychological benefits from saving money; thus, the deferment decision is not influenced by the 

probability of realizing a savings. The REB shopper maximizes expected savings (across all 

items on the list), taking into account the fixed cost of a visit to Retailer 2 

 Max
λt

E λt
TQtdt{ }− k , (1) 

where dt is a vector of price differences, , Qt is a diagonal matrix of required 

purchase quantities, 𝑄! = 𝑑𝑖𝑎𝑔 𝑞!! , 𝑞!! ,⋯ , 𝑞!" , and E is the expectation operator. Observe that 

positive values in the price difference vector imply a positive contribution to savings by 

deferring purchase to Retailer 2. The REB shopper’s maximization of expected savings in (1) 

implicitly assigns λit = 1 for each product where E(dt) > 0 and λit = 0 otherwise. Because multi-

store shoppers visit both retailers by definition, the optimality of this decision requires that the 

REB shopper’s expected savings (including the fixed cost k) is positive. 

Proposition 1 – The REB shopper’s decision of whether to defer purchase of an item to 

Retailer 2 is an increasing function of the contribution to expected savings at Retailer 2. 

3.2. The Psychological Benefits and Rational Economic Benefits (PB+REB) Shopper 

For the second case, we consider the shopper who derives utility from the psychological benefits, 

in addition to the rational economic benefits, of saving money. Because psychological benefits 

(unlike rational economic benefits) are not proportional to the amount saved, we model 

psychological benefits as depending on whether or not the shopper realizes a savings. The 

PB+REB shopper therefore places a positive weight not only on the expected savings from 

deferring purchase of the item but also on the probability of saving money by deferring purchase. 

The two components are combined into a single objective function with the use of decision 

weight functions g and h. The particular choice of g and h reflects the PB+REB shopper’s utility 

associated with economic and psychological benefits. We make only the mild assumptions that 

)2()1(
ttt ppd −=
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these decision weight functions are nonnegative and strictly monotone increasing. These 

assumptions ensure that, all things being equal, i) the PB+REB shopper is more likely to defer 

item purchases if the expected savings of doing so is greater, holding the probability of realizing 

a savings fixed; and ii) the shopper is more likely to defer item purchases if the probability of 

realizing a savings (by deferring) is greater, holding the expected savings fixed. The 

mathematical program for this decision model in period t is 

 Max
λt

g E λt
TQtdt{ }− k( )+ h Pr λtTQtdt > k{ }( ) , (2) 

where E λt
TQtdt{ }− k  

is the expected savings from deferring a proportion of purchases  to 

Retailer 2 and Pr λt
TQtdt > k{ }  is the probability of realizing a savings (more specifically, a 

positive savings > $0) by deferring a proportion of purchases  to Retailer 2. We now consider 

this probability term in more detail. 

Recall that there are many theoretical explanations for why shoppers may derive 

psychological benefits from saving money. The PB+REB shopper realizes a savings only if the 

purchases deferred to Retailer 2 more than offset the fixed cost of buying common items at the 

second retailer. Moreover, our assumptions that the weighting function h is nonnegative and 

strictly monotone increasing imply risk aversion; that is, the shopper’s utility is decreasing in the 

uncertainty of realizing a savings. Incorporating risk aversion in this manner will yield a 

different specification for shopper utility than what is currently found in the literature. 

To analyze the probability of realizing a savings, we now assume that price differences 

between the two stores on trip t, , can be modeled by a vector equation of the 

general form  

tλ

tλ

)2()1(
ttt ppd −=
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 dt = δt ψt( )+ηt ,
6 (3) 

where ψt is a trip-specific matrix of relevant price information, including known price histories 

of items on the shopping list as well as observed prices of those items at Retailer 1 on the current 

trip t and any advertised specials; ηt is a vector of random errors such that ηt ~ N 0,Σ t( ) . If we 

further assume that the components of the error vector ηt are serially uncorrelated and 

uncorrelated across items, then we have a simpler form for the variance-covariance of random 

error, namely,   = 𝑑𝑖𝑎𝑔 𝜎!!! ,𝜎!!! ,⋯ ,𝜎!"!! .  Because these errors apply to price differences, the 

model does not preclude the possibility of item price correlation between retailers, as one might 

expect to arise through normal price competition. 

It is important to emphasize that we do not assume that the marginal distributions of 

individual prices are normal, an assumption that would be overly optimistic in many settings. 

Rather, we assume that the shopper has learned about price differences through shopping and can 

therefore approximate the expectation and variance of the price differences between stores for 

common items. Only residual uncertainty (which cannot be learned) is assumed to be normally 

distributed. The normality assumption on ηt implies that E dt( ) = δt ψt( ) ; note that we suppress 

the conditioning information ψt in the treatment below to simplify the remaining exposition. 

In order to arrive at a distribution for the probability term from (2) we take its normalized 

version 

 , (4) 

                                                
6 If we assume that the prices at the first retailer are observed, then this can be rearranged to represent the 
conditional distribution of prices at Retailer 2 given prices at Retailer 1. 

[ ] [ ]
⎟
⎟
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where δt is the vector of expected price differences. The probability of realizing a savings in (4) 

reduces to  

 , (5) 

where   The probability of realizing savings by purchasing proportion  at Retailer 

2 is therefore 

 , (6) 

where  is the c.d.f. of the standard normal.  

By substituting terms we can now formally rewrite the maximization posed in (2) as  

 Max
λt

g λt
TQtδt − k( )+ h 1−Φ

k − λt
TQtδt#$ %&

λt
TQtΣtQtλt

(

)
*
*

+

,
-
-

#

$

.

.

%

&

/
/

. (7)  

The maximization (7) has no closed-form solution, yet it is still possible to determine 

important properties of its structure. To do so, we must first define the index set  

where δit is the ith component of δt. The set  is comprised of the items that the PB+REB 

shopper expects to find at lower prices at Retailer 2 on trip t. Consequently,  represents the 

item’s contribution to expected savings for . Assuming that PB+REB shoppers visit both 

stores, the positive elements of the optimal decision vector  are limited to the items in . 

This and other properties of the optimal solution are addressed in the following theorem. 

Theorem: Suppose ∑
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2.  for  

3.  For any  with , . 

4.  If , then . 

We provide a proof of these conditions in Appendix A. Observe that these conditions do not 

depend on the fixed cost k, a construct of the model which is neither measured nor calculated. 

Parts 1 and 2 of the theorem tell us that every item whose expected price is lower at 

Retailer 2, , should be purchased in some proportion at Retailer 2, while every item whose 

expected price is not lower at Retailer 2, +∉ tIi , should not be purchased at Retailer 2. Part 3 of 

the theorem defines the relationship between any two products that should be bought in some 

proportion at both retailers. Part 4 of the theorem specifies the relationship that must hold if the 

PB+REB shopper prefers purchasing item i in greater proportion than item j at Retailer 2. The 

necessary condition is that the ratio δit
qitσ it

2  for item i must exceed the same ratio for item j. This 

is an intuitively appealing condition since it incorporates both expected savings and price 

uncertainty in a simple and parsimonious way. Moreover, it confirms the simple intuition that the 

PB+REB shopper should defer those purchases to the second retailer that have the greatest 

certainty of contributing to savings. To our knowledge, no existing models of decision-making 

under price uncertainty use this ratio. We note that it is similar to the Sharpe ratio used in 

financial portfolio theory, except that the denominator in our expression uses the variance, 

instead of the standard deviation, and includes a quantity scale factor. The quantity scale factor 

arises because buying larger quantities increases the expected contribution to savings but also, to 

a greater extent, the uncertainty of the contribution to savings by purchasing at Retailer 2. 
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Proposition 2 – For PB+REB shoppers, the decision to defer purchase of an item to the 

second retailer visited is an increasing function of the contribution to expected savings, 

divided by the product of quantity and contribution to variance of savings. 

An important consequence of the theorem is the structure of the optimal proportion 

function, which is the proportion of an item that should be purchased at the second retailer. Per 

Part 1 of the Theorem, the PB+REB shopper’s optimal purchase proportion for an item is 0 if δit 

≤ 0. By Part 4 of the theorem, if the PB+REB shopper chooses to buy all of item j at Retailer 2, 

then any item i whose ratio satisfies  

 

should also be purchased in its entirety at Retailer 2. Thus, there exists a critical ratio such that 

all items with higher ratios are purchased in their entirety at Retailer 2. By Part 3 and Part 4 of 

the theorem, the optimal purchase proportion at the second retailer increases in the ratio  

prior to reaching its maximum of 1 at this critical ratio. In summary, all other things being equal, 

the PB+REB shopper’s optimal proportion function is a monotone increasing function of the 

argument , taking the value 0 when this argument is sufficiently small and 1 when this 

argument is sufficiently large.  

Investigating the functional form of the monotone increasing relationship between  

and the optimal proportion λit
*  for the interval 0 < λit

* <1 is important for empirical application of 

the model. If  were a linear (or very nearly linear) function of  over that interval, then 

the relationship between the two would be well approximated by a piecewise-linear sigmoidal 
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function as shown in Figure 1 and therefore estimable using a binary choice function such as 

logit or probit, both of which are appropriate and well supported for empirical applications (see 

Ben-Akiva and Lerman 1985, pp. 67-72).7  

Place Figure 1 about here 

To test for linearity in the relationship, we conducted a numerical study detailed in 

Appendix B. For this study, we used a flexible form for the decision weight functions g and h 

and systematically varied these decision weight functions to investigate their impact on the 

relationship between  and λit
* . We found that for all combinations of decision weights 

considered, the relationship is linear or very nearly so. The virtual linearity of this relationship 

motivates the use of the logit form for our empirical demonstration. 

Two other issues warrant discussion. 

• Price Promotions. In some cases, the price difference for an item is known with certainty 

due to the retailer’s feature advertising. In this case, the variance of the price difference is 

0. In such cases, either λit = 1 (when the item is cheaper at Retailer 2), or λit = 0 (when 

the product is cheaper at Retailer 1). 

• Travel Routes. An important exogenous factor in our analysis is the order in which 

retailers are visited. When visiting two retailers, there are two possible routes of return, 

each beginning with a different retailer. We do not assume the buyer begins at home, 

since groceries are often purchased in conjunction with other shopping activities 

(Dellaert, et al. 1998). However, we do assume that home is the destination after the final 

retailer is visited, as we anticipate that many perishable and/or frozen items would require 

prompt refrigeration. The two routes of return are represented in Figure 2 by solid and 

dashed arrows, respectively. For the bold route in Figure 2, Retailer A is the first one 

visited; for the dotted route, Retailer B is visited first. Observe that the setup costs for 

                                                
7 Ben-Akiva and Lerman (1985) argued that “because of behaviorally unrealistic ‘kinks’ in the linear probability 
model [i.e., piecewise linear sigmoidal function] and because of its forecasts of unrealistic, extreme probabilities in 
some circumstances” (p. 69), it is better approximated by logit and probit models for stochastic applications.  

2
itit

it
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visiting the second retailer are not necessarily symmetric. In Figure 2, the additional 

setup cost of going from Retailer A to Retailer B (the route shown in bold) is greater than 

the additional setup cost of going from Retailer B to Retailer A (the dotted route). 

Retailer A is nearly “on the way home” after visiting Retailer B whereas Retailer B is 

“out of the way” after visiting Retailer A.  Finally, note that the routing decision is 

dependent on the distributions of prices offered by the two retailers. The relationship 

between retailer pricing and the shopper’s optimal routing is examined in detail in 

Bhaskaran and Semple (2012). This study shows that differences in the skewness of 

retailers’ price distributions alone can materially affect a shopper’s expected purchase 

costs, resulting in different optimal routes. 

Place Figure 2 about here 
 
4. Empirical Demonstration 

In this section, we use actual common item purchases made by multi-store shoppers to 

demonstrate that some shoppers enjoy psychological benefits, in addition to the economic 

benefits, of saving money. Note that our objective is to provide a demonstration of the 

analytically-derived propositions in §3, not to conduct a generalizable test of shopping behavior. 

4.1. Data  

We use IRI panel data from the Chicago market over 104 weeks between October 1995 and 

October 1997. Panelists recorded the UPCs (uniform product codes) of all packaged goods 

products purchased on all trips to a wide variety of retailers using in-home scanning equipment, 

identifying the retailer by store chain rather than by individual store. Developing the dataset 

requires that we select panel members, identify multi-store shopping trips and common item 

purchases made on those trips. We apply the following selection criteria: 

 

1) We confine our attention to the two largest grocery retailers, Jewel and Dominick’s. 

Together, these two retailers account for 64% of all grocery purchases made by the 
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panelists in the dataset. If the household visited both Jewel and Dominick’s on the same 

day (i.e., without intervening consumption), we identify these visits as multi-store 

shopping. The ordering of Retailer 1 and 2 is determined by the order in which panelists 

recorded their purchases.8 52.9% of shoppers were more likely to visit Jewel first (i.e., as 

Retailer 1) when multi-store shopping; 41.2% of shoppers were more likely to visit 

Dominick’s first; 5.9% visited Jewel and Dominick’s first with equal frequency. 

Whichever retailer the shopper was most likely to visit first, she visited that retailer first 

on 64.7% of her multi-store shopping trips, on average. Clearly, the multi-store shoppers 

in our sample did not always visit the same retailer first. 

2) We limit the dataset to households that visited these two retailers on the same day at least 

five times over the duration of the dataset. In this way, we ensure that households were 

experienced multi-store shoppers and, consequently, that their multi-store shopping visits 

were planned.  

3) The purchases in our dataset are limited to items in the fifteen categories for which item-

level price data are available--1-beer & ale, 2-chocolate candy, 3-carbonated beverages, 

4-salty snacks, 5-coffee, 6-facial cosmetics, 7-internal analgesics, 8-sanitary napkins, 9-

shampoo, 10-vitamins, 11-cigarettes, 12-diapers, 13-dog food, 14-household cleaners, 

and 15-laundry detergents--and only items in those categories that were available at both 

retailers. Note that none of these categories are perishable, which might increase 

shoppers’ propensity to buy them at Retailer 2 ceteris paribus. We also exclude items 

from our dataset if they were advertised at Retailer 2. This eliminates the possibility that 

shoppers knew the price at Retailer 2 in advance and therefore faced no uncertainty about 

the expected savings.  

4) Finally, each purchase observation in the dataset must have sufficient history to compute 

expected savings and variance of savings, both conditioned on the observed price at the 

first retailer visited. These computations are detailed in Appendix C. 

Applying these four criteria results in a final dataset of 873 multi-store purchases made by 51 

households over the 104-week period. Though we certainly would have preferred to have more 

                                                
8 Panelists were instructed to record purchases on the day and in the order that stores were visited. Our empirical 
testing assumes that panelists followed these rules. IRI, Inc. monitors panelist compliance, but we do not know 
specific monitoring policies. 
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households in our final dataset, we have been intentionally conservative in identifying multi-

store shopping purchases that reflect the assumptions of our model. As mentioned above, 

limiting our dataset to experienced multi-store shoppers ensures that their shopping trips were 

planned in advance (Fox and Hoch 2005). Selecting common item purchases only if both stores 

were visited without intervening consumption ensures that the shopping list was not increased 

between visits. As a result of this conservative approach, the 873 purchases in the dataset are, to 

the extent possible, representative of our analytical model. And while our intention is simply to 

demonstrate that some multi-store shoppers enjoy psychological benefits, the large number of 

observations per household supports the reliability of our findings.9  

In Table 1, we compare the frequent multi-store shoppers whose purchases were included 

in our dataset to the panelists whose purchases were not included. From the table, we see that 

frequent multi-store shoppers differ from other panelists in a number of characteristics: family 

size--3.25 members for multi-store shoppers vs. 2.87 members for others; working women--

58.8% for multi-store shoppers vs. 64.0% for others; homeowners--92.2% for multi-store 

shoppers vs. 82.0% for others; and married--80.4% for multi-store shoppers vs. 68.4% for others.  

Place Table 1 about here 

In Table 2, we present descriptive statistics for the frequent multi-store shoppers whose 

purchases are included in our dataset both when they are shopping at multiple stores on the same 

day and when they are not. The table shows the average number of store visits over the duration 

of our dataset and average expenditure per trip. We see that the multi-store shoppers in our 

dataset made almost 31% (= 43.80 / 143.45) of their store visits on days when they visited 

multiple stores. These shoppers also spent almost as much on each visit when multi-store 

shopping ($56.06) as when visiting only one store ($62.73). The same statistics for panelists not 
                                                
9 Note that we performed two robustness checks by applying different selection criteria, which are detailed in §4.5. 
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included in our dataset are presented for comparison, and it appears that they shop considerably 

less than the multi-store shoppers in our dataset. We observe that the frequent multi-store 

shoppers in our dataset made 187.25 (= 43.80 + 143.45) total store visits while the other 

shoppers made only 64.02 (= 2.40 + 61.62) total store visits--nearly three times fewer. 

Place Table 2 about here 

4.2. Variable Definitions   

We carry forward the notation from the analytical model; however, our empirical analysis is 

conducted at the individual level so we will add a subscript for household. Accordingly, the 

dependent variable in our econometric model is the probability πhit that household h purchases 

common item i on trip t at Retailer 1 (rather than deferring purchase to Retailer 2), where 

ℎ = 1,2,⋯ ,𝐻 denotes households, 𝑡 = 1,2,⋯ ,𝑇! denotes trips and 𝑖 = 1,2,⋯ ,𝑛!! denotes 

common items.10 Observe that this dependent variable is the dual of λ*, the optimal proportion to 

be deferred to Retailer 2, and that the signs of response parameters should be consistent with this 

dependent variable (i.e., negative algebraic sign).  

The expected utility that a multi-store shopper receives from purchasing a common item 

at Retailer 1 (rather than deferring purchase to Retailer 2) is a function of the rational economic 

benefits (REB) and psychological benefits (PB) from saving money by deferring purchase to 

Retailer 2. As asserted in Proposition 1, the REB shopper’s decision to defer purchase to 

Retailer 2 is an increasing function of the contribution to expected savings. For household h 

purchasing item i, the predictor is qhitδhit . Proposition 2 asserts that, for the PB+REB shopper 

(who derives psychological benefits, in addition to economic benefits, from saving money), the 

                                                
10 Recall from §3 that the shopper’s decision to defer purchases to Retailer 2 is, strictly speaking, a proportion of 
item purchases. Practically, however, purchases are discrete and units of the same common item are seldom bought 
at both retailers (fewer than 1.2% of purchases in our data) so the dependent variable in our empirical specification 
is a probability. 
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decision to defer purchase to Retailer 2 is an increasing function of the contribution to expected 

savings, divided by the product of the quantity and the contribution to variance of savings. For 

household h purchasing item i, the predictor is δhit
qhitσ hit

2 . The two quantities qhitδhit  and 
δhit

qhitσ hit
2  

will play a critical role in our empirical analysis.  

We assume that the shopper’s information about price savings comes from previous 

multi-store trips on which the household made purchases in the category. During those trips, the 

shopper would have access to comparative pricing information for common items in the 

category. Because they depend on shopping history, contributions to expectation and variance of 

savings for each common item are household-specific, hence the h subscript. Moreover, because 

the shopper observes the prices of common items at Retailer 1 before making deferral decisions, 

we assume that she uses this information to condition contributions to expected savings (for 

example, observing a discounted price at Retailer 1 reduces the expected savings of deferring 

purchase to Retailer 2). The computations of conditional contributions to expectation and 

variance are detailed in Appendix C. To simplify the exposition, however, we will omit the 

conditioning arguments in the remainder of this section.  

It is important to acknowledge that there may be non-price reasons for multi-store 

shoppers to purchase specific categories at Retailer 1. Consequently, while it is not possible to 

capture all of the non-price factors separately, we construct a category-specific store loyalty 

measure for each household as a proxy (cf. Bell, et al. 1998): 

 Loyhtc =
yhiw
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∑
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where  is an indicator variable which takes the value 1 if item i from household h’s shopping 

list for trip w was purchased at Retailer j; j=1,2; 0 otherwise. Note that category-specific store 

loyalty is indexed by trip because it reflects the proportion of all category purchases made by 

household h at each retailer prior to the current trip t. 

4.3. Modeling Approach 

The analytical development in §3 predicts differences in purchase decisions for common items 

between REB shoppers, motivated only by the rational economic benefits of saving money, and 

PB+REB shoppers, motivated by both the economic and psychological benefits of saving 

money. For REB shoppers, we write the deterministic component of the indirect utility as 

follows  

 Uhit = β0 +γLoyhct +βE qhitδhit( ) , (9) 
 
where βE denotes a decision weight that governs the extent to which the multi-store shopper is 

motivated by economic benefits. Note that we expect βE<0, given the way in which we computed 

the contribution to expected savings in §4.2. Category-specific store loyalty to Retailer 1 for item 

i∈c, Loyhct, is specified as a covariate with associated parameter γ. Similarly, for PB+REB 

shoppers who are motivated by both the psychological and economic benefits of saving money, 

we write the deterministic component of indirect utility as follows 

 Uhit = β0 +γLoyhct +βP
δhit

qhitσ hit
2

!

"
#

$

%
& , (10) 

 
where βP denotes a decision weight that indicates the extent to which the multi-store shopper is 

motivated by both psychological and economic benefits. Here too, we expect βP < 0 and again 

specify Loyhct for item i∈c as a covariate with associated parameter γ. 

yhiw
j( )
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4.3.1. Model Forms. The decision weights βE and βP play a critical role in our analysis. Consider 

the following possible scenarios: 

• βE≠0 but βP=0; in this case, all shoppers are motivated by the economic benefits, 

but not psychological benefits, of the expected saving money--the probability of 

deferring purchase to the second retailer will increase as the contribution to 

expected savings increases. 

• βP≠0 but βE=0; in this case, all shoppers are motivated by both the psychological 

and economic benefits of the saving money--the probability of deferring purchase 

to the second retailer will increase as the ratio of contribution to expected savings 

divided by contribution to variance of savings increases. 

These scenarios raise the possibility that shoppers may differ in their motivations, the 

way they process information, and the way they make decisions. Accordingly, we will allow for 

heterogeneity by estimating a constrained finite-mixture formulation which assumes that there 

are 𝑠 = 1,⋯ , 𝑆 segments of multi-store shoppers such that, within each segment, shoppers are 

motivated by the economic and, perhaps, also the psychological benefits of saving money.11 We 

will always allow γ to be freely estimable which is consistent with the role of category-specific 

store loyalty as a covariate. The finite mixture models allow us to determine whether some multi-

store shoppers are motivated by psychological benefits in deciding where to purchase the 

common items on their shopping lists. Thus, we rewrite the deterministic component of 

household h’s utility of purchasing item i at the first retailer on trip t as  

  Uhit = β0s +γ sLoyhct +βEs qhitδhit( )+βPs
δhit

qhitσ hit
2

!

"
#

$

%
& , (11) 

                                                
11 We could have chosen to utilize a continuous mixture formulation to account for heterogeneity instead, but we 
are interested in the size of the segments. 



 27 

,)θ(dF)θ|y(L)y(L hh ∫=

),θ|y(Lα)y(L sh

S

s
sh ∑

1=
=

where the decision weights and category-specific store loyalty parameters now vary by segment. 

However, as stated above, we will never allow both βE and βP to be non-zero within a given 

segment. Rather, we align each segment with a specific motivation by setting one of these 

parameters to zero. 

4.3.2. Estimation. We model the probability that household h chooses to buy common item i 

from her shopping list on trip t at Retailer 1, the first retailer visited on that multi-store shopping 

trip, as  

 . (12) 

As discussed in §3.2, because the purchase decision function is approximately piecewise-linear, 

the logit is an appropriate model form for estimating the probability (for a detailed discussion, 

see Ben-Akiva and Lerman 1985, pp. 67-72).  

In general, the unconditional likelihood for a multi-store shopper with common item 

purchase vector yh can be written as 

  (13)
 

where L(yh|θ) is the conditional likelihood with parameters θ (=γ, βE, and βP), and F(•) is the 

mixing distribution. It can be shown that a continuous mixing distribution function F(•) can be 

consistently estimated with a finite number of S mass points (cf. Simon 1976), i.e.,  

  (14) 

where θs is the vector of parameters, and αs is the mixing proportion or segment share for 

segment s, such that 0≤αs≤1 and α1 + α2 + …. + αS=1. Parameters are estimated using both the 

EM algorithm and the Newton-Raphson method. To decrease the chance of local maxima 

solutions, we use multiple sets of random start values. Within each set of random start values, we 

perform a number of iterations and continue with the best solution until convergence. 

π hit =
eUhit

1+ eUhit
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4.4. Empirical Results 

Table 3 provides a description of alternative model forms along with goodness of fit statistics 

and hit rates. Table 4 provides parameter estimates for the best fitting model. We use AIC3 

(Andrews and Currim 2003) and BIC (Schwartz 1978) to compare model fits.12  

Table 3 is divided into two sections. The first section considers model forms in which all 

shoppers are assumed to be homogeneous, so no explicit segments are specified. Specifically, 

models M0_1 and M0_2 assume that all shoppers are either motivated by economic benefits 

alone, i.e., expected contribution to savings (Model M0_1) or by both economic and 

psychological benefits, i.e., the ratio of expected contribution to savings to variance in 

contribution to savings (Model M0_2), with store loyalty as a covariate. We present these models 

as baselines to compare the heterogeneous models. The second section considers model forms 

that assume shoppers are not all alike, the nature of heterogeneity being characterized by the 

number of segments specified and the constraints placed on the βE and βP parameters.  

Place Table 3 about here 

From the table we see that all of the heterogeneous model forms fit better than either of 

the homogeneous models M0_1 and M0_2. Among the heterogeneous model forms, models 

M3_1-M3_4 generally provide better fits than the others. Coincidently, models M3_1-M3_4 are 

structural mixtures in that they include both REB and PB+REB shopper segments. The 

uniformly superior fits of these structural mixtures compared to models M0_1 and M0_2, the 

homogeneous model forms, suggests that multi-store shoppers are in fact heterogeneous in their 

motivations for saving money.  

                                                
12 There is some evidence to suggest that the AIC3 is superior to the other information theoretic statistics for the 
purpose of deciding on the number of segments to retain in finite mixture models (Andrews and Currim 2003; Dias 
2004). 
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Model M3_1 is the most parsimonious of the structural mixture models, with one REB 

segment and one PB+REB segment. This model performs best on both information criteria and 

yields the highest hit rate; thus, it offers the best balance of fit and parsimony. From Table 4 we 

see that all M3_1 parameter estimates are statistically significant and have the expected algebraic 

sign. A greater contribution to expected savings at Retailer 2 (for the REB segment) and a 

greater ratio of contribution to expected savings over contribution to variance in savings (for the 

PB+REB segment) lead to lower purchase probabilities at Retailer 1; for both segments, loyalty 

to Retailer 1 leads to higher purchase probabilities at Retailer 1. Thus, after controlling for 

category-specific store loyalty, we find evidence that multi-store shoppers can be “typed” based 

on whether they experience psychological benefits from saving money. Interestingly, we infer 

from model M3_1 that, in our sample, 62% multi-store shoppers are motivated by economic 

benefits alone, while 38% are motivated by both psychological and economic benefits.  

Place Table 4 about here 

4.5. Robustness Checks 

In this section, we investigate the sensitivity of our results to model specification and the criteria 

used to design our dataset.  

4.5.1. Model Forms with Additive Risk Term. While our utility specification for PB+REB 

shoppers clearly implies risk aversion (see §3.2), we now estimate a more common specification 

of risk aversion. Analysis of risky returns in finance uses an additive term to capture the 

premium required for an investor to be indifferent between the risky return and a risk-free return. 

This “risk premium” reflects the risk aversion commonly observed in financial decisions. The 

riskiness of a return is measured by the standard deviation of that return.  
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Because the price savings that a shopper may realize by deferring common item 

purchases is effectively a risky return, we estimate an alternative model for this decision which 

includes an additive risk term. Specifically, we assume that multi-store shoppers’ decisions to 

defer purchase of common items to Retailer 2 depend uniformly on 1) store loyalty, 2) 

contribution to expected savings, and 3) the standard deviation of contribution to savings.13 If 

shoppers are generally risk-averse, then we would expect the parameter for the standard 

deviation of contribution to savings, or risk parameter (see footnote 15), to be positive. In other 

words, a greater risk of realizing the expected savings at Retailer 2 would result in a 

concomitantly greater probability of purchasing at Retailer 1. We find that the estimated risk 

parameter is in fact positive (0.6379) but the t-value of 1.00, is not statistically significant at the 

p <.05 level. In addition, we find that goodness-of-fit criteria do not favor this model with an 

additive risk term compared to the model without it (model form M0_1). 

4.5.2. Sensitivity to Sample Selection Criteria. Recall that household panel members’ common 

item purchases were included in our analysis dataset based on specific selection criteria.  The 

selection criteria were applied to ensure that multi-store shoppers and their common item 

purchases were consistent with the assumptions underlying our analytical model.  We now 

investigate the robustness of our empirical results by selecting two alternative purchase samples 

using different selection criteria.  

Robustness Sample A: This sample was restricted to households that made at least 

ten (10) multi-store shopping trips to the two retailers during the data collection 

period as opposed to five; thus, only the most experienced multi-store shoppers 
                                                
13 Under this specification, the deterministic component of utility of a multi-store shopper purchasing at Retailer 1 is  
 Uhit = β0 +γLoyhct +βE qhitδhit( )+βR qhitσ hit( )  (15) 

where σ hit = σ hit
2  reflects the risk of realizing the expected savings by deferring purchase to Retailer 2 and βR is 

the associated decision weight. Thus, in this specification, utility is an additive function of risk.  
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were included. We selected this sample to test whether our empirical results 

depend on households’ multi-store shopping expertise.  

Robustness Sample B: This sample reflects a different assumption about how 

shoppers develop expectations about items’ contribution to price savings. 

Adopting a rational expectations approach, this sample incorporates the entire 

history of price differences between retailers, regardless of which prices the 

household might have observed. The implication is that multi-store shoppers’ 

common item purchase decisions are made as if the shoppers know the entire 

history of price differences for common items.  

In the case of both robustness samples, we fit all model forms described in Table 

3.  For both robustness samples, M3_1 was again the best-fitting model in terms of both 

goodness-of-fit and hit rate.  Interestingly, some patterns in the parameter estimates are 

noteworthy.  For Robustness Sample A, which imposed a stricter multi-store shopping 

experience criterion, the relationships were stronger, fits were better and parameter 

estimates were statistically significant with tighter confidence intervals. These findings 

suggest that, the more experienced the multi-store shopper, the more consistent their 

common item decision-making is with our proposed model.  

For Robustness Sample B, which was less restrictive by virtue of assuming rational 

expectations for expected price savings, we found that parameter estimates βE and βP had wider 

confidence intervals, signaling weaker relationships. This finding suggests that the fit of the 

empirical model does depend on one’s assumption about how expectations about price savings 

are developed. This is not surprising because, by assuming that shoppers know the entire history 

of price differences between stores (which is practically impossible), Robustness Sample B 

systematically understates shoppers’ sampling variation and hence their true beliefs about the 

variance of price savings. As a result, the ratio of contribution to expected savings (which is 
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unbiased) over contribution to variance in savings (which has a downward bias) is overstated, 

with some highly influential observations due to the small denominator. This explains the weaker 

relationships found in Robustness Sample B.  

5. Discussion, Limitations and Future Research 

We now return to the multi-store shopper’s problem of deciding where to purchase the items on 

her shopping list, given visits to two stores on a predetermined route. Both REB and PB+REB 

shoppers benefit from reducing uncertainty about prices at the second store that they visit. For 

the REB shopper, the sum of savings realized over the entire basket is maximized when prices at 

both stores are known, because savings is maximized for each item. For the PB+REB shopper, 

the probability of saving money on each item in the basket is also maximized when prices at the 

second store are known. In either case, both retailers sell only items that they price lower than 

their competitor.  

The multi-store shopper’s primary method of reducing price uncertainty is to study 

retailer ads, thereby eliminating uncertainty about price savings for some items.14 The retailer 

can also affect shoppers’ uncertainty about savings, thereby affecting where multi-store shoppers 

will buy. For items priced below competition, the retailer can maximize its sales to multi-store 

shoppers by reducing the uncertainty of expected savings. This can be accomplished by 

consistently pricing a fixed amount below competition. Such a strategy requires that the retailer’s 

timing and depth of discounts match competition, resulting in a high correlation in price between 

the two retailers. For products priced above competition, the retailer can maximize its sales to 

multi-store shoppers by discounting independent of competition (thereby preventing shoppers 

from using the retailer’s own discounts to reduce uncertainty about competitor prices).  

                                                
14 Recall from §2.1 that Urbany, et al. (1991) and Urbany, et al. (2000) found multi-store shoppers are more likely to 
study retailer ads. 
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The primary limitation of this research is our inability to identify all multi-store shopping 

visits in the empirical data. We have applied a restrictive criterion, i.e., visits to multiple grocery 

retailers without intervening consumption, which clearly understates the amount of multi-store 

shopping. This limitation is an obstacle to actually determining the frequency of multi-store 

shopping. Moreover, our empirical demonstration implicitly assumes that shoppers behave the 

same way when visiting multiple grocery stores in a single day as they would if splitting their 

purchases with an intervening break. We have also limited our demonstration to the two largest 

grocery chains in a duopolistic market, and therefore do not consider the possibility of multi-

store shopping across three or more retailers (though according to Fox and Hoch 2005 and 

Talukdar, et al. 2010, this occurs very infrequently). Additionally, we have implicitly assumed 

that consumer decision processes and preferences do not vary over time. Though this assumption 

is common in models of consumer choice, it is possible that consumers’ motivations and 

preferences for saving money are non-stationary. 

Our theory of multi-store shoppers’ purchase decisions for common items introduces the 

ratio of expected savings to the variance of savings. The manner in which we have modeled the 

formation of items’ contributions to expectation and variance of savings, however, is only one 

possible operationalization. How expectations and variances are actually constructed is open to 

competing possibilities. This represents a significant opportunity for future research.  
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Appendix A 
 

Proof of Theorem 1. Because ∑
+∈

>−
tIi

itit kq 0δ , consider the solution 1=itλ  for all +∈ tIi , and 

0=itλ  for +∉ tIi  . ∑
+∈

>−
tIi

ititit kq 0δλ  for this solution. Observe that a solution with positive expected 

savings dominates all solutions with non-positive expected savings, i.e., both g  and h  are larger with 

positive expected savings. We may therefore assume that ∑
+∈

>−
tIi

ititit kq 0* δλ  in any optimal solution 

vector *
tλ . 

 Now we show that 0* =itλ  for all +∉ tIi . Suppose this were not the case, and 0* >itλ  for some 

+∉ tIi . Then construct a new vector '
tλ  as follows: *'

jtjt λλ =  for ij ≠ , 0' =jtλ  for ij = . Observe  (a) 

tt
T
ttt

T
t QQ δλδλ  * ' > , (b) 0 * ' <−<− tt

T
ttt

T
t QkQk δλδλ , and (c) * *' '

tttt
T
ttttt

T
t QQQQ λλλλ Σ<Σ . 

Observation (a) implies g  will increase for the new solution '
tλ . Observations (b) and (c) imply the 

argument of Φ  will decrease, and so h  will increase. This contradicts the optimality of *
tλ  and implies 

0* =itλ  for all +∉ tIi . This proves part 1 of the theorem. 

We now show that 0* >itλ  for all +∈ tIi  . Because ∑
+∈

>−
tIi

ititit kq 0* δλ , at least one component 

of the optimal solution is positive.  Let that component be 0* >itλ  +∈ tIi . Now suppose  for 

some (other) item +∈ tIj . We will construct a strictly better solution that satisfies 0* >jtλ .  Consider the 

vector '
tλ , ελλ += *'

itit , ε
δ
δ

λ
jtjt

itit
jt q

q
=' , and *'

ktkt λλ =  for all jik ,≠  where 0>ε  is a small positive 

perturbation. This new solution is feasible for ε  taken sufficiently close to 0. Moreover, by design, the 

solution preserves expected savings for all values of ε , i.e.,  

∑∑
++ ∈∈

=
tt Ii

ititit
Ii

ititit qq δλδλ *'  for all ε . 

This means the value of g  is identical for both 'λ  and *λ . We now show h  increases.  

0* =jtλ
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Observe that h ’s argument is ⎟
⎟

⎠

⎞

⎜
⎜

⎝
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Σ

−
Φ−

tttt
T
t

tt
T
t

QQ
Qk

λλ

δλ1 . The term tt
T
t Qk δλ−  in the numerator 

of Φ ’s argument is identical for 'λ  and *λ  (it’s the negative of expected savings). However, the 

denominator of Φ ’s argument does change. In fact, straightforward algebra reveals the expression under  

the root changes by a net amount of 

    . 

For sufficiently small , this expression is negative because the linear term (in ε ) dominates the 

quadratic term (in ε ). This means * *' '
tttt

T
ttttt

T
t QQQQ λλλλ Σ<Σ  and so the argument of Φ  decreases as 

well (recall the numerator satisfies 0*' <−=− tt
T
ttt

T
t QkQk δλδλ ). This means Φ−1  increases, and so 

h  does as well. Thus 0* >itλ  for all +∈ tIi . This proves part 2.   

To prove part 3, consider any optimal solution vector *
tλ  having 1* <itλ , 1* <jtλ , and define a 

new vector '
tλ  such that ελλ −= *'

itit , ε
δ
δ

λλ
jtjt

itit
jtjt q
q

+= *' , and *'
ktkt λλ =  for all jik ,≠  where ε  is 

again a small perturbation, but this time it can be of either sign because *
itλ  and *

jtλ  are interior solutions 

(< 1 by assumption, > 0 by part 2). For small enough values of ε  near 0, the solution remains feasible. As 

in the proof of part 2, this constructed solution maintains the same expected savings and so it preserves 

the value of g. Also as in the proof of part 2, the vector '
tλ  preserves the value in the numerator of ’s 

argument.  Consequently, the denominator of ’s argument must increase or stay the same so that 

optimality is preserved.  After some algebra, the net change in the expression under the root in the 

denominator of Φ ’s argument is  

( ) 22

2

*222* 22 jtjt
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This expression must be nonnegative to preserve optimality of *
tλ . The linear term dominates the 

quadratic terms as ε  becomes small, but the linear term is also symmetric in ε , and so we must have  
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to preserve optimality. Dividing this expression by  and rearranging the remaining terms yields the 

expression in part 3.  

To prove part 4, consider an optimal solution with **
itjt λλ < , and use the same perturbation as in 

part 3, with the exception now that because  we can only consider one-sided perturbations  

(to ensure feasibility if 1* =itλ ). The optimality of  implies the net change in the expression under the 

root in Φ ’s argument must satisfy the inequality 

   . 

Dividing this by , taking the limit as , and rearranging the remaining terms yields 

. 

But , hence , which implies part 4.  
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Appendix B 
 

Numerical Study. Using a numerical study, we investigate the relationship between the ratio of 

expected savings to variance in savings (scaled by quantity) and the optimal proportion to be 

purchased at Retailer. We are particularly interested in how this relationship might be impacted 

by different decision weighting functions g and h in the maximization (7), shown below for 

convenience 

   

Recall that the decision weighting functions g and h are required only to be non-negative 

and strictly monotone increasing. We have therefore adopted a flexible specification 

 to explore these weighting functions, where µ is an intercept, ω is a slope, 

υ is an exponent, (•) is the relevant argument and m indexes the decision weighting function g or 

h  (a similar specification was used in Chambers, et al. 2006). While this specification does not 

capture all possible functional forms, it is nonetheless quite general, allowing for non-linearity, 

concavity and convexity. 

We selected three different slopes for each weighting function: ωg = .01, .02, .05 and ωh 

= .25, .50 and 1.00. Note that the scales are quite different for ωg and ωh. This is because the 

argument of the g function sums savings over all items, given the decision vector λ. Thus, the 

argument is unbounded from above and increases with the number of items on the shopping list. 

The argument of the h function is a probability and therefore bounded [0,1], regardless of the 

number of items on the list.  

We selected three exponents which were applied to the two weighting functions: υm = .5, 

1, and 2. This enables us to investigate concavity, linearity and convexity for both weighting 

functions. Note that when the unbounded argument of the g function has a convex weighting 

function (in our analysis υg = 2), together with a larger shopping list and correspondingly larger 

savings, the first term in the maximization function becomes very large relative to the second 

term. The result is very few optimal proportions between 0 and 1. 

The intercept terms µm enter the maximization (7) as additive constants and consequently 

do not affect the resulting optimal decision vector. Without loss of generality, then, we set µg = 

Max
λt

g λt
TQtδt − k( )+ h 1−Φ

k − λt
TQtδt#$ %&

λt
TQtΣtQtλt

(

)
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-
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µh = 0. The diagonal matrix of quantities Q simply scales the expected savings and variance of 

savings terms. It is set to the identity matrix. 

In conducting our numerical study, we systematically varied ωg, ωh, υg and υh. For each 

combination of slopes and exponents, we assumed a shopping list of fifty items. The 

contributions to expected savings by purchasing these items at Retailer 2 were randomly drawn 

from a uniform distribution, δt ~ U(-1,1); the contributions to variances of savings were also 

randomly drawn from a uniform distribution,  ~  U(0,1).15 The ratio of contribution to 

expected savings over contribution to variance in savings for item i, , could therefore vary 

from -∞ to ∞. In order to test for a linear relationship between this ratio and the corresponding 

optimal proportion for  we required that at least 3 of the 50 items on the list have 

optimal proportions in this range. Using a rejection sampling approach, we i) drew the random 

vectors δt and , ii) maximized (7) using the Newton-Raphson method to find the vector of 

optimal proportions ; iii) if at least 3 of the 50 optimal proportions  were between 0 and 1, 

then we regressed the ratios  on the corresponding proportions  and recorded the R2 of 

that regression. If fewer than 3 of the 50 products were found to have optimal proportions in this 

range, we rejected that sample and repeated the process. We continued sampling until 20 

conforming samples were reached for each combination of slopes and exponents.  

The results of our numerical study are shown in panels A and B of Table B1. We find 

that the relationship is virtually linear, with the average R2 for 20 conforming samples at least 

0.9987 for every combination of slopes and exponents except one (ωg = .2, ωh = .25, υg = .5 and 

υh = .5 yielded an R2 of 0.9621). Overall, the mean of the average R2s across all 81 combinations 

of slopes and exponents is 0.9994.  

We believe that this numerical study provides sufficient support to treat the relationship 

between the ratio  and the corresponding optimal proportion  as approximately linear 

for  between 0 and 1 so that: 

• for all values of the ratio less than or equal to 0, the optimal proportion is 0  
                                                
15 Note that the diagonal matrix of quantities Σ was assumed to be an identity matrix. 

σ t
2

δit
σ it
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λit
* 0 < λit

* <1

σ t
2

λt
* λit
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• for all values of the ratio above a certain critical threshold, the optimal proportion is 1  

• in the interval between, the optimal proportion is approximately a linear function of the ratio  

 

Insert Table B1 about here 
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Appendix C 
 

The conditional contribution to expected price savings is computed as follows: 

        

, (C.1) 

where 

 is the unconditional contribution to expected savings, 

 is the expected price at Retailer 1, 

 is the covariance between the price at Retailer 1 and the contribution 

to savings from deferring to Retailer 2, and  

 is the variance of prices at Retailer 1. 

Similarly, the conditional contribution to variance of price savings is computed as follows 

, (C.2) 

where
 

 is the unconditional contribution to variance of savings. For our dataset, 

the conditional contributions to expectation and variance of savings were computed iteratively 

using the Expectation-Maximization (EM) algorithm until the estimates converged (see, for 

example, Johnson and Wichern 2007, Ch. 5).  

Note that conditioning the contribution to expectation and variance of savings on current 

prices at Retailer 1 is a special case of the set of conditioning arguments assumed in our 

analytical development in §3. It is also important to note that we do not claim that shoppers 

actually perform the computations in equations (C.1) and (C.2); rather, we argue that they make 

decisions as if they had performed them.  
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Exhibit 1 
 

Summary of Notation 
Symbol Meaning 

 Item-level stochastic prices for Retailer 1 on trip t 

  Item-level stochastic prices for Retailer 2 on trip t 

 Proportion of item purchases at Retailer 2 on trip t 	
  

 

         

 

Diagonal matrix of required quantities on trip t  
Item-level contributions to savings by deferring purchases to 
Retailer 2 on trip t 
Expected item-level contributions to savings by deferring 
purchases to Retailer 2 on trip t 

Σt 
Variance/covariance matrix of random error terms from 
shopper’s model of price savings on trip t 

K Fixed cost of purchasing common items at Retailer 2 
 

 
 

  

pt
(1) = p1t

(1), p2t
(1),…, pnt

(1)( )
pt
(2) = p1t

(2), p2t
(2),…, pnt

(2)( )
λt = λ1t,λ2t,…,λnt( )

Qt = diag q1t,q2t,…,qnt( )

dt = d1t,d2t,…,dnt( )

δt = δ1t,δ2t,…,δnt( )
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Figure 1 
The Optimal Proportion of an Item to Buy at the Second Retailer 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 
Routes of Return Beginning with Different Retailers 

 
  Retailer B 

Retailer A 

Household 

1 

0 
 

Proportion
n 

Critical  
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Table 1 
Panelist Demographics 

 
 Multi-Store Shoppers 

Included in Dataset (n=51) 
Other Shoppers Not in Dataset 

(n=485) 
 mean std dev mean std dev 

Family Size 3.25 1.44 2.87 1.44 
Household Income (x$1,000) 53.4 25.9 51.3 26.3 
Working Adult Female 0.588 0.497 0.640 0.480 
College Education 0.216 0.415 0.202 0.402 
Home Owner 0.922 0.272 0.820 0.385 
Married 0.804 0.401 0.684 0.465 

     
 
 
 
 
 
 

Table 2 
Panelist Multi-Store Shopping vs. Single-Store Shopping Behavior  

 
   n mean std dev 

Multi-Store Shoppers Included in Dataset     
 When Multi-Store Shopping # Store Visits 51 43.80 30.32 
  $ / Store Visit 2336 $56.06  $43.61  
 When Single-Store Shopping # Store Visits 51 143.45 65.16 
  $ / Store Visit 7316 $62.73  $51.34  

Other Shoppers Not in Dataset     
 When Multi-Store Shopping # Store Visits 485 2.40 4.69 
  $ / Store Visit 1164 $50.28  $43.66  
 When Single-Store Shopping # Store Visits 485 61.62 59.66 
  $ / Store Visit 29888 $70.72  $57.37  
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Table 3 
Description of Models Estimated 

 

Model Description 
No. of 

Segments Parameters LL AIC3 BIC Hit Rate 

M0_1 Purchasing at Retailer 1 function of loyalty and expected price 
savings:γ≠0,βE≠0.βP=0 

1 2 -651.34 1305.68 1306.34 57.48% 

M0_2 Purchasing at Retailer 1 function of loyalty and expected price 
savings/variance:γ≠0,βE=0.βP≠0 

1 2 -660.45 1323.90 1324.56 54.51% 

Heterogeneity Models       

M1_1 Heterogeneity in loyalty and expected price savings:γ1≠0,βE1≠0,βP1=0; 
γ2≠0,βE2≠0,βP2=0 

2 5 -637.55 1290.10 1293.42 63.57% 

M1_2 Heterogeneity in loyalty and expected price savings:γ1≠0,βE1≠0,βP1=0; 
γ2≠0,βE2≠0,βP2=0;γ3≠0,βE3≠0,βP3=0 

3 8 -634.21 1292.42 1297.73 64.88% 

M2_1 Heterogeneity in loyalty and expected price savings/ 
variance:γ1≠0,βE1=0,βP1≠0; γ2≠0,βE2=0,βP2≠0 

2 5 -641.95 1298.90 1302.22 54.51% 

M2_2 Heterogeneity in loyalty and expected price savings/ 
variance:γ1≠0,βE1=0,βP1≠0; γ2≠0,βE2=0,βP2≠0;γ3≠0,βE3=0,βP3≠0 

3 8 -639.16 1302.32 1307.63 54.10% 

M3_1 Heterogeneity in loyalty, expected price savings and expected price 
savings/variance:γ1≠0,βE1≠0,βP1=0; γ2≠0,βE2=0,βP2≠0  

2 5 -636.54 1288.08 1291.40 66.70% 

M3_2 Heterogeneity in loyalty, expected price savings and expected price 
savings/variance:γ1≠0,βE1≠0,βP1=0; γ2≠0,βE2=0,βP2≠0; 
γ3≠0,βE3≠0,βP3=0  

3 8 -633.01 1290.02 1295.33 66.42% 

M3_3 Heterogeneity in loyalty, expected price savings and expected price 
savings/variance:γ1≠0,βE1≠0,βP1=0; γ2≠0,βE2=0,βP2≠0; 
γ3≠0,βE3=0,βP3≠0 

3 8 -634.19 1292.38 1297.69 65.16% 

M3_4 Heterogeneity in loyalty, expected price savings and expected price 
savings/variance:γ1≠0,βE1≠0,βP1=0; 
γ2≠0,βE2=0,βP2≠0;γ3≠0,βE3≠0,βP3=0;γ4≠0,βE4=0,βP4≠0  

4 11 -631.60 1296.20 1303.50 60.45% 
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Table 4 
Model M3_1 Parameter Estimates 

 
 Segment 1 Segment 2 
 Economic Benefit(62.36%) Psychological Benefit (37.64%) 

Variable Estimate Std Error t-Value p-level Estimate Std Error t-Value p-level 
Loyalty 1.3996 0.1099 12.73521 <0.001 0.7885 0.0656 12.01982 <0.001 
Expected 
Price Savings 

-0.2925 0.0142 -20.5986 <0.001 C NA NA NA 

Expected 
Price Savings/ 
Variance in 
Price Savings 

C NA NA NA -0.0516 0.0098 -5.26531 <0.01 
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Table B1 
Decision Weighting Function Numerical Study 

Panel A  Panel B 
g   h     g   h    

slope (wg) exp (ug)  slope (wh) exp (uh)  R2  slope (wg) exp (ug)  slope (wh) exp (uh)  R2 

0.01 0.5  0.25 0.5  0.998792  0.01 1  0.25 2  0.999858 
0.02 0.5  0.25 0.5  0.962059  0.02 1  0.25 2  0.999960 
0.05 0.5  0.25 0.5  0.999723  0.05 1  0.25 2  0.999980 
0.01 0.5  0.5 0.5  0.999825  0.01 1  0.5 2  0.999998 
0.02 0.5  0.5 0.5  0.998936  0.02 1  0.5 2  0.999885 
0.05 0.5  0.5 0.5  0.999795  0.05 1  0.5 2  0.999997 
0.01 0.5  1 0.5  0.999842  0.01 1  1 2  0.999998 
0.02 0.5  1 0.5  0.999069  0.02 1  1 2  0.999999 
0.05 0.5  1 0.5  0.999678  0.05 1  1 2  0.999994 

               
0.01 0.5  0.25 1  0.999116  0.01 2  0.25 0.5  0.999953 
0.02 0.5  0.25 1  0.998968  0.02 2  0.25 0.5  0.999841 
0.05 0.5  0.25 1  0.999832  0.05 2  0.25 0.5  0.999804 
0.01 0.5  0.5 1  0.999857  0.01 2  0.5 0.5  0.999995 
0.02 0.5  0.5 1  0.999914  0.02 2  0.5 0.5  0.999996 
0.05 0.5  0.5 1  0.999735  0.05 2  0.5 0.5  0.999993 
0.01 0.5  1 1  0.999956  0.01 2  1 0.5  0.999987 
0.02 0.5  1 1  0.999972  0.02 2  1 0.5  0.999974 
0.05 0.5  1 1  0.999991  0.05 2  1 0.5  0.999962 

               
0.01 0.5  0.25 2  0.999971  0.01 2  0.25 1  0.999999 
0.02 0.5  0.25 2  0.999988  0.02 2  0.25 1  0.999717 
0.05 0.5  0.25 2  0.999761  0.05 2  0.25 1  0.999986 
0.01 0.5  0.5 2  0.999988  0.01 2  0.5 1  0.999999 
0.02 0.5  0.5 2  0.999977  0.02 2  0.5 1  0.999989 
0.05 0.5  0.5 2  0.999997  0.05 2  0.5 1  0.999968 
0.01 0.5  1 2  0.999998  0.01 2  1 1  0.999999 
0.02 0.5  1 2  0.999993  0.02 2  1 1  1.000000 
0.05 0.5  1 2  0.999994  0.05 2  1 1  0.999999 

               
0.01 1  0.25 0.5  0.999763  0.01 2  0.25 2  0.999998 
0.02 1  0.25 0.5  0.999902  0.02 2  0.25 2  0.999968 
0.05 1  0.25 0.5  0.999939  0.05 2  0.25 2  0.999998 
0.01 1  0.5 0.5  0.999778  0.01 2  0.5 2  1.000000 
0.02 1  0.5 0.5  0.999953  0.02 2  0.5 2  0.999985 
0.05 1  0.5 0.5  0.999980  0.05 2  0.5 2  0.999997 
0.01 1  1 0.5  0.999827  0.01 2  1 2  1.000000 
0.02 1  1 0.5  0.999714  0.02 2  1 2  1.000000 
0.05 1  1 0.5  0.999881  0.05 2  1 2  1.000000 

               
0.01 1  0.25 1  0.999814         
0.02 1  0.25 1  0.999975         
0.05 1  0.25 1  0.999956         
0.01 1  0.5 1  0.999865         
0.02 1  0.5 1  0.999936         
0.05 1  0.5 1  0.999961         
0.01 1  1 1  0.999977         
0.02 1  1 1  0.999872         
0.05 1  1 1  0.999996         

 


