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Abstract. We develop a framework to model the shopping and consumption decisions of
forward-looking consumers. Assuming that the consumer’s future utility for each product
alternative can be characterized by a standard random utility model, we use dynamic
programming to determine the optimal consumption policy and the maximum expected
value of consuming any n substitutable products selected while shopping (an n-pack).
We propose two models. In the first (canonical) model, we assume that an alternative is
consumed on each successive consumption occasion and obtain a closed-form optimal
policy and a closed-form value function. Given a consumer’s preferences for the product
alternatives in an assortment, we then show how to identify that consumer’s optimal
n-pack using a simple swapping algorithm that converges in at most n swaps. In the
second (generalized) model, we introduce an outside option so that a product alternative
need not be consumed on each consumption occasion. We obtain a closed-form value
function for the generalized model and show that its optimal n-pack is related to that of
the canonical model using a special type of majorization. Additional structural properties
and implications of each model are explored, as are other applications.

History: Accepted by Vishal Gaur, operations management.
Supplemental Material: The online appendix is available at https://doi.org/10.1287/mnsc.2017.2729.

Keywords: dynamic programming • decision analysis • utility/preference applications • multinomial logit • assortment optimization

1. Introduction
A great deal of research has focused on two key con-
sumer decisions: (i) the shopping, or purchase, deci-
sion, which is usually made in store; and (ii) the
consumption decision, which is made later at the time
of consumption. For consumer packaged goods, the
two decisions are inextricably linked, even though they
occur at different times and in different places.
Shopping decisions are made for future consump-

tion, which generally occurs over multiple consump-
tion occasions. On each such occasion, only products
selected previously while shopping are available to
be consumed. The shopping decision therefore cre-
ates a set of products for future consumption and so
is inherently forward looking. At the same time, the
shopping decision constrains the product alternatives
that are available for future consumption compared
to the full assortment in store. Each successive con-
sumption decision may further constrain the prod-
uct alternatives available, depending on how many
units of each product alternative were selected when
shopping. If the consumer has only a single unit
of a particular product alternative remaining, then
consuming it would preclude choosing that alterna-
tive on all succeeding consumption occasions. Because
consumption decisions—like the shopping decision—
affect the expected utility of future consumption, these
decisions are also inherently forward looking.

In this paper, we propose a two-stage model of
shopping and consumption. In the first stage, the con-
sumer selects a set of n products (n is exogenous), the
“n-pack,” to be consumed over a horizon having mul-
tiple future periods. In the second stage, the n-pack is
iteratively consumed over multiple periods, which we
model using dynamic programming (DP). The n-pack
may include m ≤ n product alternatives so multiple
units of each alternative may be selected. If one unit is
consumed each period and there is no outside option,
the horizon has n periods. If an outside option is intro-
duced, the horizon can have any number of periods.
The primary purpose of this paper is to investigate and
establish the basic analytical properties of the model
with and without an outside option.

The model without an outside option is referred to
as the canonical model because its assumptions mirror
those used in the consumer behavior literature for over
25 years, beginning with Simonson (1990). While this
model introduces analytical complexities absent from
prior work, it yields a closed-form optimal consump-
tion policy and a closed-form value function for any
n-pack. The latter function parsimoniously captures
the benefits of diversifying the n-pack versus choosing
more units of one’s most preferred product alterna-
tives (as measured by the alternatives’ expected util-
ities). Analysis of the canonical model yields some
interesting and important insights. We find that the
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optimal consumption policy does not require the con-
sumer to select the product that offers the highest util-
ity on each consumption occasion; rather, the optimal
policy is about matching products with consumption
occasions. This matching policy depends on the inven-
tory of available product alternatives and the stochas-
tic (but not the deterministic) component of utility for
available product alternatives. Consumption decisions
therefore do not reveal preferences, per se. Analysis of
our model shows that a consumer’s optimal n-pack is
also the set of productsmost likely to be consumed over
n independent consumption occasions had each con-
sumption choice been made from the full assortment,
what Simonson (1990) and Read and Loewenstein
(1995) refer to as “sequential choice.” Note that sequen-
tial choice does not restrict the alternatives that can
be selected on each consumption occasion, whereas
choosing from a previously selected n-pack most cer-
tainly does.
The model with an outside option on each con-

sumption occasion is referred to as the generalized
model. To our knowledge, no other study of shopping
and consumption has incorporated an outside option,
which effectively slows the rate of consumption, ceteris
paribus. For the generalized model, the value func-
tion and the optimal policy are also closed-form but
more complex than in the canonical case. We show
that the optimal n-pack in the generalized case is at
least as diversified as the optimal n-pack in the canon-
ical case. This is made possible by relating the opti-
mal n-pack of the generalized model to the optimal
n-pack of the canonical model using a new, special-
ized type of majorization. Finally, we show that the
marginal change in the value of an n-pack decreases
as the time horizon increases; i.e., the value function in
the generalized model is “concave” in the number of
time periods.
For these models, we assume knowledge of the con-

sumer’s long-run consumption probabilities for the
full assortment of product alternatives in store. This
requirement is not as onerous as it might seem, as few
products from the full assortment are typically consid-
ered (Hauser and Wernerfelt 1990, Roberts and Lattin
1991). We also assume that a consumer’s future prefer-
ences (utilities) are uncertain and can be described by a
standard random utility framework. This is consistent
with the work of Guo (2010) and Walsh (1995).

Applied researchers doing behavioral research could
use our model as a rational baseline for shopping
and consumption decisions when investigating variety
seeking (e.g., Simonson 1990, Read and Loewenstein
1995) or state dependence (e.g., Guo 2010). Our closed-
form optimal consumption policy would also be use-
ful in structural models of multiproduct shopping.
Because our model permits easy estimation of the con-
sumer’s valuation of any n-pack, applied researchers

can use those estimates as inputs for other discrete
choice models that predict n-pack selection from the
modeler’s perspective (see Guo 2010 for an example).
Indeed, embedding our model within a larger analyti-
cal framework—potentially in an operational setting—
offers significant application potential.

While this researchwas not intended to create a deci-
sion support tool, manufacturers and retailers could
benefit from using our models to develop specific
n-packs. Most n-packs are composed of several units
of a single product alternative (e.g., 6-packs of beer or
carbonated beverages); others are composed of mul-
tiple product alternatives from a single manufacturer
(e.g., variety packs of single-serve cereals or yogurts).
In either case, the n-pack offered may not be optimal
for an individual consumer. Our analysis provides a
framework to determine how individual consumers
or consumer segments would value different n-packs.
The value function can be optimized over the space of
all possible n-packs to predict the customized n-pack
that a given consumer would choose in the shop-
ping stage. Though this optimization problem is inher-
ently difficult to solve using off-the-shelf software, we
develop a greedy swapping algorithm that computes
the optimal n-pack in at most n swaps.

We have proposed our model as an assortment opti-
mizationmodel at the consumer level. However, it may
be applied to other problems. As a case in point, we
describe an application for maximizing auction rev-
enues at the end of the paper. Also, while the current
paper focuses solely on the analytical aspects of our
dynamic models, the authors have already conducted
laboratory experiments to confirm predictions the
canonical model makes regarding rational consumer
behavior. The data collected from these experiments
is the basis for a companion paper covering empirical
aspects of our models. Some of the data collected from
these experiments are used in Sections 3.4 and 3.5.

2. Literature Review
Consumer psychologists and economists have long rec-
ognized that preference uncertainty affects consumers’
product choices (Pessemier 1978, March 1978, Kreps
1979, Kahneman and Snell 1990). Simonson (1990)
was among the first consumer psychologists to study
the effect of preference uncertainty on shopping deci-
sions, finding what has come to be known as the
diversification bias (cf. Read and Loewenstein 1995).
In a series of three experiments, Simonson showed
that consumers systematically seek more variety (mea-
sured by the absolute number of different product
alternatives selected) when choosing an assortment of
products for the future compared to choosing each
product sequentially at the time of consumption. This
research stream has generated additional empirical
results. For example, Simonson and Winer (1992) used
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scanner panel data to show that increasing the size
of a retailer’s assortment increases the variety of fla-
vors consumers select. Salisbury and Feinberg (2008)
proposed that diversification may involve a rational
response to preference uncertainty, in addition to vari-
ety seeking. Because our model is based exclusively on
utility-maximizing behavior in the presence of prefer-
ence uncertainty, it provides an appropriate baseline
against which to evaluate variety seeking (or positive
state dependence) in consumption decisions.
In an article titled “The Lure of Choice,” Bown et al.

(2003) found that people prefer to preserve options for
the future, even when doing so leads to less desir-
able outcomes. Our canonical model strongly sup-
ports this finding. The experiments reported in their
study involve two-stage choices, where only a single
item is chosen in the second stage. Similar two-stage
choice models have been applied to consideration set
formation (Hauser and Wernerfelt 1990, Roberts and
Lattin 1991) and to choice among retail assortments
(Kahn and Lehmann 1991). Like the models we pro-
pose herein, these two-stage models specify Gumbel-
distributed errors to represent preference uncertainty.

Guo (2010) developed a structural econometric
model for consumers’ choice of assortments (n-packs).
His model allows for consumption flexibility due to
future preference uncertainty as well as state depen-
dence; our model addresses only the former. Guo esti-
mated his model on scanner panel data for yogurt pur-
chases. Because consumption data was not available,
Guo estimated the consumer’s valuation of each assort-
ment (what we call n-packs) using simulation. This
involved simulating error streams for each alternative
over the consumption horizon and assuming that the
consumer selects the alternative offering the highest
utility on each consumption occasion. We note that
such a consumption policy is plausible but not opti-
mal. Guo found that allowing for both future prefer-
ence uncertainty and state dependence offers better in-
and out-of-sample fits for the scanner panel data than
more restricted nestedmodels. However, his parameter
estimates indicate positive state dependence—this is
the opposite of variety seeking, which is received wis-
dom in consumer psychology (Simonson 1990, Read
and Loewenstein 1995). Guo also found that consumers
make consistent multiproduct purchases; that is, they
purchase horizontally varied sets of products but pur-
chase similar sets of products over time. In an earlier
study, Guo (2006) determined that consumption flex-
ibility, due to preference uncertainty, also affects firm
decisions about product variety and pricing. Using a
duopoly model, Guo identified the conditions under
which consumers purchase multiple competing prod-
ucts. He found that, if consumers have relatively homo-
geneous preferences, firms can actually make lower

profits by falling into a “flexibility trap” by pricing to
attract primary demand.

The work that is closest to ours is due to Walsh
(1995). In this paper, the author modeled consump-
tion decisions for assortments with two product alter-
natives. Both alternatives’ future utilities are random,
and the problem reduces to an equivalent one in which
one alternative has random utility and the other has
constant utility (a reduction that only works for assort-
ments with precisely two alternatives). Assuming that
consumers are forward looking, Walsh developed
dynamic equations that describe optimal consumption
behavior and the associated value function. Although
the form of the policy and the value function are not
available in closed form,Walsh’s analysis yielded three
interesting findings: (i) consumers may not choose the
alternative offering the greatest utility on a particu-
lar consumption occasion; (ii) more inventory of an
alternative makes it more likely to be selected; and
(iii) adding an additional unit to the assortment causes
the utility of that assortment to increase by more than
the expected utility of the item added. Our canonical
model generalizes Walsh’s findings (and adds some
refinements) while enabling normative predictions for
shopping decisions. Further, our generalized model
(including an outside option for consumption) demon-
strates that the canonical model represents a bound-
ary solution. Compared to Walsh’s model, our models
(i) apply to n-packs of any size and with any num-
ber of product alternatives; (ii) result in a closed-form
value function that can be maximized to determine
each consumer’s optimal n-pack; and (iii) are based
on marginal choice probabilities and so can be cus-
tomized to individual consumers and used for decision
support. The trade-off we make is in using the multi-
nomial logit (MNL) framework—deterministic utility
plus Gumbel-distributed errors—to model future util-
ities; Walsh used a general error distribution. Given
the ubiquity of MNL in discrete choice and assortment
planning models, we feel that this trade-off is justified.

Another related vein of research involves assortment
optimization in the revenue management literature.
MNL also plays a prominent role in this research.
One of the earliest papers in this vein is due to van
Ryzin andMahajan (1999a), who usedMNL embedded
in the demand model of a newsvendor problem and
derived optimal profit functions under several reason-
able assumptions. The authors showed that the profit-
maximizing assortment is some subset of the most
popular products (the most popular products have
the highest probability of being selected). The authors
used the concept of majorization to derive sufficient
conditions that ensure the profits of one category dom-
inate those of another. In a subsequent paper, Talluri
and van Ryzin (2004) introduced a dynamic model
and developed conditions on the choice probabilities
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that ensure the optimal assortment is some contiguous
set of the highest fare products (the “nested by fare
order” property). They developed necessary and suffi-
cient conditions that once again involve the concept of
majorization, and theMNL choicemodel was shown to
satisfy these conditions. More recently, Rusmevichien-
tong and Topaloglu (2012) showed that these results
remain valid for MNL in the presence of parameter
uncertainty (for the choice probabilities) and a capacity
constraint.
In contrast to these papers, our model addresses

assortment optimization at the consumer level and
not the retailer level. Moreover, our model does not
use MNL choice probabilities to capture consumer
demand, but instead uses the random utility framework
of MNL to capture preference (utility) fluctuations for
a given consumer over time. Ourmodel also focuses on
the combination of alternatives and quantities that com-
prise a consumer’s optimal n-pack. Majorization plays
an important role in our work as well, but we do not
use it as an assumption to prove a theoretical result.
Rather, we find that a stronger form of majorization,
what we have called “strong majorization,” character-
izes the relationship between the optimal solutions of
our two main models.

3. Expected Utility of an n-Pack:
The Canonical Model

3.1. Assumptions
Consistent with the extant literature, we begin by
assuming (in this section) that the consumer selects
an alternative from a preselected n-pack on each con-
sumption occasion. There are M distinct product alter-
natives available in the product category (the full
assortment available in store), although only m alterna-
tives are represented in the n-pack (m ≤ n ,m ≤M). The
deterministic utility parameters for each alternative are
Ui (i � 1, 2, . . . ,M). These parameters could be a func-
tion of many things; however, we take them to be fixed
for ease of exposition. On any particular consumption
occasion t, the utility that consumer c receives from
a particular alternative i is Uci + εcit , where the ran-
dom errors εcit are assumed to be independent Gum-
bel distributed with CDF F(z) � exp(−e−(z−µ)/β). The
errors account for a variety of unmodeled factors that
affect consumption decisions. For example, a consumer
might prefer vegetable soup on most consumption
occasions but prefer chicken soup when feeling ill—
this would be captured in the error term. Like Walsh
(1995) and Guo (2010), we assume these errors become
known to the consumer at the time of consumption but
not before. Given the canonical model’s assumption
that one unit is consumed per period, we must have
t � 1, 2, . . . , n periods in the consumption horizon.
Without loss of generality, we may assume that the

problem has been normalized so that the errors are

standard Gumbel with µ � 0 and β � 1 (observe that
Uci + εcit ≥ Ucl + εclt if and only if (1/β)Uci + (1/β) ·
(εcit − µ) ≥ (1/β)Ucl + (1/β)(εclt − µ), but (1/β)(εcit − µ)
is standard Gumbel for all (c , i , t)). The expectation
of a standard Gumbel is E(εcit) � ∫∞0 ln(z)e−z dz; this
is Euler’s constant and denoted by γ. The expected
utility of each product is therefore E(Uci + εcit) �
Uci + γ. Without loss of generality, alternatives are
ordered Uc1 ≥Uc2 ≥ · · · ≥UcM . In what follows, we sup-
press the subscripts on the consumer (c) and the con-
sumption period (t) to improve readability.

An n-pack of substitutable products can be math-
ematically represented by a vector of integer quanti-
ties (k1 , k2 , . . . , kM), ki ∈ �0

� {0, 1, 2, . . .}, and ∑
i ki � n.

Returning to the soup example with vegetable in the
vector’s first position and chicken in the second, the
consumer might select the pack (3, 1, 0, . . . , 0), which
means three cans of vegetable and one can of chicken
(n � 4,m � 2). Once an n-pack is selected, we assume
there is no replenishment of inventory until all units
are consumed. The optimal value function, which is
the expected utility received by following an optimal
consumption policy, is denoted by V(k1 , k2 , . . . , kM).
A timeline that illustrates the dynamics for consum-

ing a 3-pack consisting of one unit of alternative 1, one
unit of alternative 2, and one unit of alternative 3 is
shown in Figure 1. We have assumed the consump-
tion sequence is alternative 2, then alternative 3, then
alternative 1. In practice, this sequence would be deter-
mined by the optimal consumption policy, which is
formally described later in Theorem 1.

3.2. Consuming a Given n-Pack:
The Recursion Equation

Recall that the consumption stage is the second stage
of our two-stage model (selection/purchase is first,
consumption is second), and this stage will involve
dynamic programming. Let us first consider the sim-
ple case for M � 2 product alternatives, labeled 1 and
2 (U1 ≥ U2). The smallest 1-packs for consumption are
(1, 0) and (0, 1), and it is clear V(1, 0) � U1 + γ and
V(0, 1) � U2 + γ. Let us suppose that we have calcu-
lated V( · ) for all (n − 1)-packs having two or fewer
product alternatives. Now consider all n-packs hav-
ing two or fewer alternatives. The two least diversified
n-packs have expected values V(n , 0) � n × (U1 + γ)
and V(0, n) � n × (U2 + γ). For all remaining n-packs
(k1 , k2) (with k1 > 0, k2 > 0 and k1 + k2 � n), we must
consider both the current consumption utility, U1 + ε1
versus U2 + ε2, and the expected future utility from the
remaining items, V(k1 − 1, k2) versus V(k1 , k2 − 1). This
means we would (strictly) prefer alternative 1 on the
first consumption occasion if and only if

U1 + ε1 +V(k1 − 1, k2) >U2 + ε2 +V(k1 , k2 − 1),
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Figure 1. Timeline for Consuming the 3-pack (1, 1, 1)
Consume one unit of

alternative 3. Remaining
1-pack is (1,0,0)

Consume one unit of
alternative 2.

Remaining 2-pack
is (1,0,1)

Consume one unit of
alternative 1. All units have

been consumed.

Time

Purchase
3-pack (1,1,1)

and we would (strictly) prefer alternative 2 if the
inequality were reversed. Ties can be broken arbitrar-
ily. To simplify notation, let us define the constant

a(k1 , k2)� U1 −U2 +V(k1 − 1, k2) −V(k1 , k2 − 1), (1)

so that the optimal policy becomes: choose alterna-
tive 1 if a(k1 , k2) + ε1 > ε2, otherwise choose alterna-
tive 2. Using this optimal policy, we can calculate the
expected optimal utility, V(k1 , k2), as

V(k1 , k2)�
∞∫

−∞

ε1+a(k1 , k2)∫
−∞

(U1 + ε1 +V(k1 − 1, k2))

· exp(−e−ε1 − e−ε2)e−ε1−ε2 dε2 dε1

+

∞∫
−∞

ε2−a(k1 , k2)∫
−∞

(U2 + ε2 +V(k1 , k2 − 1))

· exp(−e−ε1 − e−ε2)e−ε1−ε2 dε1 dε2

� ln(e a(k1 , k2) + 1)+U2 + γ+V(k1 , k2 − 1). (2)

Using the recursion in (2), we can determine the value
of the n-pack (1, 1). Here, a(1, 1)� 0, and so

V(1, 1)� U1 +U2 + ln(2)+ 2γ.

Continuing to use (2) in this fashion, we obtain the
following valuations:

V(2, 1) � 2U1 +U2 + 3γ+ ln(3) (a � ln(2)),
V(1, 2) � U1 + 2U2 + 3γ+ ln(3) (a �− ln(2)),
V(3, 1) � 3U1 +U2 + 4γ+ ln(4) (a � ln(3)),
V(2, 2) � 2U1 + 2U2 + 4γ+ ln(2)+ ln(3) (a � 0),
V(1, 3) � U1 + 3U2 + 4γ+ ln(4) (a �− ln(3)), etc.

For a given n-pack having k1 ≥ 0 units of alternative 1,
the general relationship is

V(k1 , k2)� ln(n!) − ln(k1!) − ln(k2!)+ k1U1 + k2U2 + nγ.
(3)

Moreover, by the definition of a(k1 , k2) (see (1))

a(k1 , k2)� U1 −U2 +V(k1 − 1, k2) −V(k1 , k2 − 1)

� ln
(

n − 1
k1 − 1

)
− ln

(
n − 1

k1

)
� ln

(
k1

k2

)
� ln(k1) − ln(k2).

The optimal policy for consumption reduces to an intu-
itively appealing condition: “consume alternative 1 if
ε1 + ln(k1) > ε2 + ln(k2), otherwise consume alterna-
tive 2.” This policy implies that the consumer should
not necessarily choose the alternative that maximizes
their utility at each consumption occasion, but should
instead consider the magnitude of each product’s error
term (εi) adjusted for the quantity of each product
on hand (ln(ki)). Observe that this policy effectively
preserves alternatives (probabilistically speaking) for
future consumption occasions. For example, a con-
sumer with one unit of alternative 1 and four units of
alternative 2 would only consume the last unit of alter-
native 1 if − ln(4) + ε1 > ε2, which occurs with proba-
bility 0.2 (see Proposition 1). This policy is consistent
with the empirical findings of Bown et al. (2003).

The foregoing dynamic analysis can be generalized
to any number of alternatives. (The proof parallels that
of the generalized model and is treated there.)
Theorem 1 (Optimal Consumption and Value of an n-
Pack, Canonical Model). Consider an n-pack that includes
ki units of alternative i, i � 1, . . . ,M. Assume the con-
sumer must select an alternative from their remaining pack
on each future consumption occasion. Then the optimal pol-
icy for each consumption occasion is to select the alternative
that maximizes ln(ki)+ εi , and the optimal expected utility
(value) for consuming the entire n-pack is

V(k1 , k2 , . . . , kM)� ln(n!) − ln((k1)! . . . (kM)!)
+ k1U1 + · · ·+ kMUM + nγ. (4)

Observe that the linear component k1U1 + k2U2 +

k3U3 + · · · + kMUM + nγ in (4) is simply the expected
utility of consuming the entire n-pack if the sequence
of consumption were determined in advance. The log-
arithmic terms ln(n!) − ln((k1)! (k2)! · · · (kM)!) together
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reflect the additional expected utility of having the
freedom to consume products in whatever order one
chooses—we will call this additional expected util-
ity a “choice premium.” This premium can also be
interpreted as how much value the n-pack provides
in terms of hedging against future preference uncer-
tainty.1 The term ln(n!) captures the effect of an
n-pack’s size, while the term − ln((k1)! (k2)! . . . (kM)!)
captures the effects of both variety and inventory. For
an n-pack with a fixed number of units n, the choice
premium is increased by including more alternatives
and/or “flattening” the distribution of alternatives (ki).
The maximum choice premium is ln(n!), which is real-
ized when there is exactly one unit of n distinct alter-
natives; the minimum choice premium is zero, which
is realized when ki � n for some alternative i. For any
n-pack, then, the ratio of the choice premium to ln(n!)
can be interpreted as the proportion of the available
choice premium captured by that n-pack.
The intuition behind this optimal policy can bemade

clear by considering a simplified case. Let us suppose
a given consumer has a 2-pack consisting of one unit
of alternative 1 (their favorite) and one unit of alter-
native 2 (their second favorite), with U1 > U2. On the
first consumption occasion, suppose the observed error
terms are e1 and e2 with e2 > e1. Even if U2 + e2 <U1 + e1,
alternative 2 represents the better consumption choice.
This is because U1 and U2 are fixed, and so the sum of
the realized errors (one now, one later) will ultimately
decide the total utility received over both consump-
tion occasions. Because the future error is drawn from
the same error distribution, taking the largest error
available now is the optimal action. In short, the opti-
mal policy is about matching products with occasion-
specific consumption utilities. When more than one
unit of inventory is available, an adjustment is neces-
sary. Indeed, if ki > 1 units of an alternative are present,
then ki realizations of εi must be anticipated over the
remaining consumption horizon; this necessarily low-
ers the bar on the (realized) value of εi needed to make
alternative i the best match. This explains the ln(ki)
adjustment in the optimal policy.
We can also calculate the probability that a consumer

will choose a particular alternative from their remain-
ing n-pack at each consumption occasion.

Proposition 1 (The Proportionality Principle). The proba-
bility of choosing alternative i is ki/(

∑M
l�1 kl), where ki is the

current quantity of alternative i remaining in the n-pack.

This proposition follows from rearranging the prob-
ability statement and simplifying terms:

Prob(i)�Prob{Ui+V(k1 , . . . ,ki−1 ,ki−1,ki+1 , . . . ,kM)+εi

≥U j+V(k1 , . . . ,k j−1 ,k j−1,k j+1 , . . . ,kM)+ε j

∀ j, i}

�Prob(V(k1 , . . . ,kM)+ln(ki)+εi≥V(k1 , . . . ,kM)
+ln(k j)+ε j ∀ j, i)

�Prob(ln(ki)+εi≥ln(k j)+ε j ∀ j, i)� ki∑M
l�1 kl

.

The last equality follows from the standard logit prob-
ability formula with the customary utility parameter
“Ui” replaced by ln(ki).

3.3. Identifying a Consumer’s Optimal n-Pack
Given a consumer’s utility parameters Ui (as can be
estimated from purchase histories or using prefer-
ence elicitation methods), the value function in (4)
can then be optimized over all possible integer quan-
tities (k1 , k2 , . . . , kM) (ki ≥ 0,∑M

i�1 ki � n) to obtain the
consumer’s optimal n-pack, (k∗1 , k∗2 , . . . , k∗M). The optimal
pack represents the solution to the first stage (the selec-
tion/shopping stage) of our two-stage problem (selec-
tion and then consumption). Figures 2(a) and 2(b) show
the optimal n-packs of sizes n � 2 and n � 3. The opti-
mal n-packs vary by region, depending on differences
in their ranked utilities; this is because translating all
utilities by a constant translates all n-pack values by
a constant as well. We assume that the utilities are
ordered so that U1 ≥U2 ≥U3, fixing U1 � 0 for identifi-
cation purposes. For n � 2, the distribution of product
utilities is captured in the difference U1−U2, which we
plot on the horizontal axis. Figure 2(a) shows that the
2-pack (1, 1) is optimal in the region 0≤U1−U2 ≤ ln(2),

Figure 2(a). Optimal n-Pack by Region for n � 2
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Figure 2(b). Optimal n-Pack by Region for n � 3
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where the relative preference for U1 is weaker, while
(2, 0) is optimal in the region U1 − U2 > ln(2), where
the relative preference for U1 is stronger. For n � 3,
the distribution of utilities depends on both U1 − U2
and U2 −U3; the latter is plotted on the vertical axis.
Figure 2(b) shows that the 3-pack (1, 1, 1) is optimal
when the relative differences in utility, both U1 − U2
and U2 −U3, are sufficiently small; (2, 1, 0) is optimal if
U1 −U2 is sufficiently small but U2 −U3 is sufficiently
large; and (3, 0, 0) is optimal if U1 − U2 is sufficiently
large. Observe that, without knowing a consumer’s
particular utility parameters, it would be impossible to
determine if a consumer’s n-pack selection represents
a rational decision or not. To simplify the exposition
and avoid set notation, we henceforth assume the opti-
mal n-pack is unique. When this is not the case, our
subsequent results apply to each optimal solution or
the set of optimal solutions (as appropriate).
The value function is separable and concave; how-

ever, the optimization is done over the lattice points of a
scaled simplex (∑M

i�1 ki � n , ki ∈�0). This problem is less
than ideal for many solvers, andwe experienced signif-
icant difficulties trying to solve this using off-the-shelf
software (in large part because many of the k∗i are pre-
cisely zero, and the optimizer would terminate if these
slipped into negative territory). Fortunately, it is quite
easy to solve this problem using a simple optimization
algorithm based on swaps that is guaranteed to pro-
duce a global optimal solution in at most n swaps. This
algorithm is described next.
Suppose we have an incumbent feasible solution

k1 , k2 , . . . , kM (∑M
i�1 ki � n , ki ∈ �0) and want to improve

it. One way is to increase a nonnegative ki by one unit
and decrease a currently positive k j by one unit. The
net change in the objective function caused by this one-
unit swap is

Ui − ln(ki + 1) −U j + ln(k j), (5)

and this suggests the following greedy technique.
Interpreting ln(0)� lima→0+(a)�−∞, calculate the opti-
mal indices

i∗ � argmax
i
{Ui − ln(ki + 1), i � 1, . . . ,M}, (6)

j∗ � argmin
j
{U j − ln(k j), j � 1, . . . ,M}. (7)

Ties in the maximum can be broken by selecting the
alternative with the smallest index; ties in the mini-
mum can be broken by selecting the alternative with
the largest index. Then define the difference

∆≡Ui∗ − ln(ki∗ + 1) −U j∗ + ln(k j∗). (8)

If ∆ > 0, then increase ki∗ by one unit and decrease k j∗

by one unit; if no such combination exists, then stop.
Observe that if ∆ > 0, the objective function increases

by a strictly positive amount ∆ after each swap. Oth-
erwise, ∆ ≤ 0 and we must have achieved the stopping
condition

max
i
{Ui − ln(ki + 1), i � 1, . . . ,M}

≤min
j
{U j − ln(k j), j � 1, . . . ,M}. (9)

Theorem 2 (Optimality of the Swapping Algorithm).Given
any starting solution (k1 , k2 , . . . , kM) with ∑M

i�1 ki � n,
ki ∈ �0, the swapping procedure described above converges
to an optimal n-pack in at most n swaps.

The conditions (9) represent necessary and sufficient
conditions for an n-pack to be optimal, and they can
be exploited in several ways. One of these is the con-
nection between the optimal (n)-pack and the optimal
(n + 1)-pack, which is described next.

Theorem 3. Let (k∗1 , k∗2 , . . . , k∗M) represent the consumer’s
optimal n-pack. Then the consumer’s optimal (n + 1)-pack
is obtained by identifying the alternative i that maximizes
Ui − ln(k∗i + 1) and increasing that alternative by one unit.

The latter theorem not only means we can build
larger optimal packs from smaller optimal packs, but
it also identifies the marginal unit that should be added to
any optimal n-pack. For a retailer looking to encourage
a consumer to buy an additional unit, this information
would be extremely useful.

The optimality conditions can be used to obtain
insights into the structural properties of the optimal
n-pack as well. Some of these properties are included
in the following theorem, whose proof is contained in
the online appendix. (Recall ln(0)� lima→0+(a)�−∞.)

Theorem 4. The optimal n-pack, (k∗1 , k∗2 , . . . , k∗M), satisfies
the following:

(i) If k∗j � 0, then k∗l � 0 for Ul <U j;
(ii) k∗1 ≥ k∗2 ≥ k∗3 ≥ · · · ≥ k∗M;
(iii) (k∗i + 1)/k∗j ≥ exp(Ui −U j) ∀ i , j.

The first condition implies the consumer’s optimal
n-pack is a contiguous set of their favorite alterna-
tives. This property is reminiscent of the assortment
optimization results of van Ryzin andMahajan (1999b)
from the retailer’s perspective, which may not be sur-
prising given that our problem is an assortment opti-
mization problem from the consumer’s perspective.
The second condition requires monotonicity in quan-
tities; higher quantities go with higher utilities. The
last property demonstrates that the ratio (k∗i + 1)/k∗j
must exceed the ratio (exp(Ui)/exp(U j)) for any two
products i and j; we recall that exp(Ui)/exp(U j) is the
ratio of i and j’s choice probabilities in a logit frame-
work. These properties will be used in our subsequent
analyses.
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3.4. The Optimal n-Pack and Sequential Choice
The literature on multi-item set selection often uses
sequential choice experiments (or simply “sequen-
tial choice”) as a benchmark for measuring variety.
Sequential choice means the consumer is allowed to
choose any alternative from the full assortment (i.e.,
every alternative in a category that could be selected
from a store) on each consumption occasion. This wait-
and-see approachmeans the consumer can observe the
random component of utility (εi) for every alternative
in the full assortment immediately before making a
consumption decision. The consumer thus maximizes
their utility on every consumption occasion and cannot
obtain any greater utility than this when consuming n
items on n consecutive occasions. We show next that
the optimal n-pack selected a priori is the same as the
most probable set of n items chosen sequentially.

As before, we describe each n-pack using an M
dimensional vector (k1 , k2 , . . . , kM) where ki ∈ �0 re-
presents the integer quantity of alternative i and∑M

i�1 ki
� n. The optimal n-pack, denoted by (k∗1 , k∗2 , . . . , k∗M),
maximizes V(k1 , k2 , . . . , kM) in (4). Consider the M
dimensional vector (x1 , x2 , . . . , xM)where xi represents
the quantity of alternative i consumed sequentially
(∑M

i�1 xi � n). In contrast to an n-pack, the vector
(x1 , x2 , . . . , xM) is not selected in advance but rather con-
structed over n successive consumption occasions; it
represents the “final tally” for each alternative after the
nth consumption occasion. Define (x∗1 , x∗2 , . . . , x∗M) to be
the vector of quantities that ismost likely to be consumed
when choosing alternatives sequentially from the full
assortment.

Proposition 2 (Optimal n-Pack vs. Sequential Choice).
Let (k∗1 , k∗2 , . . . , k∗M) be the optimal n-pack for a consumer.
For the same consumer, let (x∗1 , x∗2 , . . . , x∗M) be the set of size
n that is most likely to be chosen sequentially from the full
assortment on n consecutive consumption occasions. Then
(k∗1 , k∗2 , . . . , k∗M)� (x∗1 , x∗2 , . . . , x∗M).
To see why the proposition is true, take U1 ≥ U2 ≥
· · · ≥ UM and translate (shift) all Ui by a suitable con-
stant so that∑M

i�1 eUi � 1. This translation merely affects
the additive constant (nγ) of the value function, which
has no bearing on the ordering of n-pack values and
thus can be ignored. Themarginal probability of select-
ing alternative i from the full assortment is therefore
pi � eUi/(eU1 + eU2 + · · ·+ eUM )� eUi . Note that ln(pi)�Ui
due to our translation. Then the probability of consum-
ing the set (x1 , x2 , . . . , xM) via sequential selection is

Pr(x1 , x2 , . . . , xM)�
n!∏M

i�1 xi!

M∏
i�1

pxi
i . (10)

We then observe that

(x∗1 , x∗2 , . . . , x∗M)� argmax
xi∈�0 ,

∑M
i�1 xi�n

n!∏M
i�1 xi!

M∏
i�1

pxi
i

� argmax
xi∈�0 ,

∑M
i�1 xi�n

ln
[

n!∏M
i�1 xi!

M∏
i�1

pxi
i

]
� argmax

xi∈�0 ,
∑M

i�1 xi�n

{
ln(n!) − ln

( M∏
i�1

xi!
)}

+

M∑
i�1

xiUi � (k∗1 , k∗2 , . . . , k∗M). (11)

A common finding in the consumer psychology lit-
erature is that sets consumed via sequential choice (the
(x1 , x2 , . . . , xM)) typically exhibit less variety than pres-
elected n-packs of the same size (e.g., Simonson 1990,
Read and Loewenstein 1995, Salisbury and Feinberg
2008). If consumers select their n-packs optimally,
then this would naturally be the case if the most
likely set selected sequentially exhibited more variety
than most other sets selected sequentially (probabilis-
tically speaking). For example, consider a hypothetical
situation where a utility-maximizing consumer likes
M � 3 alternatives equally well. For this consumer, the
choice probability (or choice frequency) for each alter-
native is 1

3 , and the optimal 3-pack is (1, 1, 1), which
solves (11). However, there are 3 × 3 × 3 � 27 equally
probable permutations that this consumer could con-
sume via sequential selection, and only six of these
permutations include all three product alternatives.
Therefore, this same consumer selecting alternatives
sequentially would naturally consume less than three
different product alternatives with probability 21/27.2
Thus, while it might appear that this consumer has
selected a 3-pack with too much variety (compared to
what would be consumed via sequential choice), this
“variety asymmetry” would be quite rational.

To see if this asymmetry was more than just a
theoretical possibility, we surveyed 168 business stu-
dents (61 MBA students and 107 BBA students) and
asked them to report the relative frequency with which
they would consume their top three snack alternatives
(drawn from a larger list of approximately 15 snack
alternatives available in local vending machines). Since
choice frequencies were only recorded for their top
three snacks, we can only compute results for the case
n �M � 3, identical to our earlier hypothetical scenario.
For each 3-tuple of self-reported choice frequencies
(favorite, second favorite, third favorite), we can calcu-
late each student’s optimal 3-pack and thus their opti-
mal number of alternatives. Having done this for the
sample of 168 students, we found that 26 students had
an optimal 3-pack with exactly one alternative; 80 stu-
dents had an optimal 3-pack with exactly two alter-
natives; and 62 students had an optimal 3-pack with
exactly three alternatives. Using the same self-reported
choice frequencies, we found that in 102 of the 168
cases (60.7%), the probability of a student consuming
less variety than their optimal 3-pack in a sequential
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choice experiment would be greater than their prob-
ability of consuming more. Additionally, the average
probability of a student consuming less variety than
their optimal 3-pack over all 168 cases was computed
to be 0.383, whereas the average probability of consum-
ing more variety was computed to be 0.151. This offers
additional support for the conjecture that consuming
less variety in sequential choice experiments may be a
consequence, in part, of probabilistic principles stem-
ming from rational decision making. Additional work
is under way to rigorously test this and other conjec-
tures regarding variety.

3.5. Robustness of the Model: Assessing the
Impact of the Gumbel Assumption

We conducted several numerical experiments to ensure
that our results were not overly dependent on the
assumption of a Gumbel distribution. We provide a
summary of the results here; the reader is referred to
Online Appendix B for details.
Two additional error distributions were selected, the

uniform and the normal. In the first numerical experi-
ment, we analyzed 3-packs based on utilities calculated
from actual choice data. In the second experiment,
we analyzed 6-packs based on utilities calculated
from simulated choice probabilities. In total, 106 test
problems were analyzed, 6 involving 3-packs and
100 involving 6-packs. In general, there were virtually
no meaningful discrepancies in valuations of n-packs
that consumers would actually choose. Consequently, the
error distribution appears to have little if any impact
on a consumer’s valuation of their most preferred
n-packs (say the ratings for their top 10–20 n-packs).
There were some discrepancies in valuations for prob-
lems that included alternatives the consumer would
rarely (if ever) select; i.e., test problems that included
oneormore “unpopular alternatives”with choiceprob-
abilities approaching zero. In such cases, the corre-
sponding utility parameter in the normal and Gum-
bel models becomes unbounded from below, whereas
the utility parameter in the uniform model does not
(it is always bounded). For this reason, the valuations
for the Gumbel and normal distributions tended to
track each other closely for all n-packs, whereas the
valuations for the uniform tended to diverge for those
n-packs that included extremely unpopular alterna-
tives. Becauseunpopular n-packs are implicitly ignored
when determining a consumer’s optimal n-pack, this
has no impact on our results.

4. Expected Utility of an n-Pack:
The Generalized Model

4.1. The Optimal Value Function
In this section, we assume the consumer may select the
outside option on any consumption occasion and thus

reject all items remaining in their pack. The introduc-
tion of an outside option effectively allows for different
consumption rates. It does, however, add complexity
compared to the canonical case.

We will again use n to denote the number of total
units in the n-pack, and M to denote the total num-
ber of distinct alternatives available. Let ki ∈ �0

�

{0, 1, 2, 3, . . .} represent the number of units of alterna-
tive i in the n-pack. The utility parameter for each alter-
native is denoted by Ui for i � 0, 1, . . . ,M (note that we
include U0, the utility of the outside option). The num-
ber of consumption occasions is denoted by t, which is
also the number of time periods in our dynamic anal-
ysis, and the value function with t periods to go is
denoted by Vt(k1 , k2 , . . . , kM), which means consump-
tion periods in the generalized model are numbered
backward (as is frequently done in dynamic program-
ming models). The value function in the terminal (sal-
vage) period (period 0) is V0(k1 , k2 , . . . , kM)� 0. One
can think of this as an n-pack becoming worthless
if its expiration date is reached without having been
consumed.

The “no consumption” option is represented by the
subscript zero, and we can represent the set that is
ultimately consumed (or “realized”) after t consump-
tion occasions by an M + 1 dimensional consumption
vector (x0 , x1 , . . . , xM), xi ∈ �0. As was the case in Sec-
tion 3.4, the consumption vector is simply the “final
tally” of units consumed for each alternative, including
the number of times the no consumption option was
invoked (this is recorded in the vector’s first position).
Define the index set of vectors

It(y0 , y1 , y2 , . . . , yM)

�

{
(x0 , x1 , . . . , xM):

M∑
i�0

xi � t; 0 ≤ xi ≤ yi ,

xi ∈ �0 , i � 0, 1, . . . ,M
}

(12)

Observe that the set It requires M + 1 inputs (y0 , y1 ,
y2 , . . . , yM) that serve as upper bounds on all possible
M+1 dimensional consumption vectors for a pack hav-
ing yi units of alternative i. As an example, suppose
there are only M � 2 products available, alternative 1
and alternative 2. A 3-pack having two units of alter-
native 1 and one unit of alternative 2 would lead to

(four periods) I4(4, 2, 1)� {(4, 0, 0); (3, 1, 0); (3, 0, 1);
(2, 1, 1); (2, 2, 0), (1, 2, 1)};

(three periods) I3(3, 2, 1)� {(3, 0, 0); (2, 1, 0); (2, 0, 1);
(1, 1, 1); (1, 2, 0); (0, 2, 1)};

(two periods) I2(2, 2, 1)� {(2, 0, 0); (1, 1, 0); (1, 0, 1);
(0, 1, 1); (0, 2, 0)};

(one period) I1(1, 2, 1)� {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.
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Observe that in each of these three sets, the first input
(y0) is taken to equal the number of consumption occa-
sions. This is appropriate since y0 is the upper bound
on the number of times the “no consumption” option
could be invoked, which is equal to the number of
consumption periods, t. While the number of terms
can be quite large, it is bounded independently of
the number of consumption occasions t. Indeed, there
are at most ∏M

i�1(ki + 1) elements in It(t , k1 , k2 , . . . , kM),
which corresponds to the number of distinct subsets
of (k1 , k2 , . . . , kM) padded by the appropriate number
of “outside option” selections to bring the total num-
ber of selections to t. This upper bound is obtained for
all t ≥ n.

Theorem 5 (Optimal Value of an n-Pack, Generalized
Model). At each consumption occasion, assume the con-
sumer can choose a product from the n-pack or select an
outside option. The optimal expected value function over
t consumption periods (assuming an optimal policy is fol-
lowed each period) is

Vt(k1 , k2 , . . . , kM)

� ln
[ ∑
(x0 ,x1 ,...,xM )∈It (t , k1 ,k2 ,...,kM )

t!
x0!x1! . . . xM! e

∑M
j�0 x j U j

]
+ tγ.

(13)

The optimal policy at each consumption occasion t is
to select, among the available alternatives, the one that
maximizes current utility plus expected utility-to-go;
i.e., the one thatmaximizesU0+ε0+Vt−1(k1 , k2 , . . . , kM),
U j + ε j +Vt−1(k1 , k2 , k j − 1, . . . , kM) for k j > 0. Unlike the
canonical version, there is no additional simplification
in the optimal policy.
While the value function is somewhat complicated, it

can be simplified under the assumption t ≥ n, whichwe
would expect to hold in practice. As noted earlier, there
are a constant ∏M

i�1(ki + 1) terms in the summation of
(13). Additionally, defining the shifted parameters U′i �
Ui−U0 (so that the outside option has utility parameter
U′0 � 0), the value function (13) can be expressed as

Vt(k1 , k2 , . . . , kM)� ln
[ ∑

xi≤ki , i≥1

t!
(t −∑M

i�1 xi)!
· e

∑M
j�1 x j U′j

x1! · · · xM!

]
+ t(γ+U0). (14)

This simplified form is easier tomanipulate and is used
extensively in Theorem 7.
The terms in the value function (13) generalize the

probability interpretation established for the canoni-
cal model in Section 3.4. There, we established that
the value function for the n-pack (k1 , k2 , . . . , kM) in
the canonical model could be equated to the log-
probability of consuming the same set of products in
a sequential choice experiment; i.e., an experiment in
which the consumer can select the product from the

full assortment that is most preferred on each con-
sumption occasion. This further implies that the utility-
maximizing n-pack selected a priori—the consumer’s
“optimal n-pack”—is also the set of product alterna-
tives most likely to be consumed in a sequential choice
experiment. As in the canonical model, we assume
that all utility parameters have been translated so that∑M

i�0 eUi � 1, which we recall simply alters the additive
constant γ used in the value function (13). The terms in
the summation in (13) then represent the cumulative
probability of consuming the n-pack (k1 , k2 , . . . , kM) or
any subset thereof in a sequential choice experiment. (If
a subset of the n-pack of size n′ < n is consumed, the
outside option must have been selected exactly t − n′

times.) Moreover, maximizing the value function in
the generalized model is equivalent to maximizing the
probability of consuming the n-pack (k1 , k2 , . . . , kM) or
any of its subsets in a sequential choice experiment.
The main difference in the generalized model is that
subsets of the original n-pack must be included in the
probability statement because the entire n-pack need
not be consumed within t time periods.

The position of U0 relative to the products U1 ,
U2 , . . . ,UM has considerable impact on the model
(canonical or generalized) that is most appropriate. In
applications where the utilities for the products in the
n-pack are considerably greater than the utility for the
outside option, one would expect the canonical model
to work well. This is because the outside option has vir-
tually no chance of being selected as the preferred alter-
native (unless the pack is exhausted). This could be the
case for many products that are consumed on a regu-
lar schedule; e.g., cereal in the morning. But for prod-
uct categories where the utility of the outside option
is greater than or equal to the utilities of products in
the n-pack, the outside option becomes a viable alter-
native. One would expect categories of less frequently
consumed goods to fit this scenario. The natural ques-
tion is, then, “How does the optimal n-pack for the
generalized model compare to the optimal n-pack for
the canonical model?” This is explored next.

4.2. Variety, Consumption Horizons, and the
Outside Option

Imagine two consumers, A and B, both of whom like
exactly three types of wine: Chardonnay, Merlot, and
Cabernet. Both consumers prefer Chardonnay 70% of
the time, Merlot 15% of the time, and Cabernet 15% of
the time. However, consumer A enjoys a bottle every
evening, whereas consumer B enjoys a bottle about
once a week. If we assume the opportunity to consume
wine presents itself every evening, then consumer A
has a very small value for U0 and thus a high usage
rate for wine, whereas consumer B has a much higher
value for U0 and thus a low usage rate for wine. Given
this information, which 3-pack of wine should each
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Table 1. Optimal 3-Pack for the Wine Example (Consumer B)

Horizon (t)

3 7 14 21 28 35 42 100

Optimal n-pack (1, 1, 1) (1, 1, 1) (2, 1, 0) (2, 1, 0) (2, 1, 0) (2, 1, 0) (3, 0, 0) (3, 0, 0)

consumer buy? (We ignore the fact consumer A would
probably tend to buy a larger pack size.)
The fact that consumer A always chooses to con-

sume wine is evidence of an intrinsically low value
for U0, one that is exceeded by U1, U2, and U3. We
would expect this consumer to always prefer wine
compared to the outside option. Indeed, for any t ≥ n,
as U0 → −∞, the value function of the generalized
model (13) can bewell approximated by the value func-
tion of the canonical model (up to an additive con-
stant). This is because the dominant term in (13) for any
n-pack becomes (t!/((t − n)!k1! . . . kM!))e

∑M
j�1 k j U j e (t−n)U0 ,

with the remaining [∏M
i�1(ki + 1)] − 1 terms contain-

ing additional powers of eU0 , which diminishes their
contribution to Vt as U0→−∞. In consumer A’s case,
the utility-maximizing 3-pack is therefore three bottles
of Chardonnay, which is the same as in the canonical
model.
The fact that consumer B chooses to consume wine

infrequently is evidence of an intrinsically higher value
for U0. Given they select the outside option 6/7 of the
time, their value for U0 exceeds the values for U1, U2,
and U3 (we used U0 �−0.1544, U1 �−2.3011, U2 �U3 �

−3.8415 so that ∑3
i�0 eUi � 1 in our subsequent calcula-

tions). Nevertheless, for large values of t, the results
for consumer B are identical to those of consumer A.
This is because, as t→∞, the dominant term in (13)
is again (t!/((t − n)!k1! . . . kM!))e

∑M
j�1 k j U j e (t−n)U0 , with the

remaining [∏M
i�1(ki +1)]−1 terms multiplied by at least

an additional factor of 1/(t − n + 1), which diminishes
their contribution to Vt as t →∞. Thus, the infinite
horizon results are identical to those of the canonical
model too.
However, given smaller values of t for consumer B,

the optimal 3-pack is not simply three bottles of
Chardonnay. Table 1 tracks the optimal 3-pack for dif-
ferent horizon lengths, t. The intuition behind the
increased variety for smaller values of t can be illus-
trated by a simple thought experiment. Suppose that
the consumer could select a 3-pack for only one (t � 1)
consumption opportunity. It should be clear that the
optimal 3-pack for the case t � 1 would be for the con-
sumer to have exactly one unit of their three favorite
products; there is no advantage to having multiple
units of any product when t � 1, and so maximizing
variety maximizes the number of independent draws,
which in turn maximizes the chances of getting the
best match for this single-period consumption occa-
sion. The case t � 1 captures what is typically known in

dynamic programming as the “end of horizon effect.”
Over slightly longer horizons, carrying greater variety
than (3, 0, 0) would still be optimal to address these
end-of-horizon effects. Nevertheless, end-of-horizon
effects typically dissipate over sufficiently long hori-
zons, and this dynamic model is no different. As the
horizon lengthens, there are sufficient opportunities to
match the right item with the right consumption occa-
sion, and the optimal n-pack converges to that of the
canonical model.

The relationship between the optimal n-pack in
the generalized model and the optimal n-pack in the
canonical model can be characterized more precisely.
The precise result is stated in the following theorem
(where alternatives are again labelled so that U1 ≥U2 ≥
· · · ≥ UM). The condition t ≥ n is included to simplify
the proof; otherwise, the number of terms in the value
function would also depend on t.

Theorem 6. For any horizon t ≥ n, denote the optimal
n-pack of the canonical model by (k∗1 , k∗2 , . . . , k∗M) and that
of the generalized model by (q∗1 , q∗2 , . . . , q∗M). Then it cannot
happen that q∗j > k∗j and q∗i < k∗i for j < i.

The theorem requires that the components of the
optimal vectors k∗ � (k∗1 , k∗2 , . . . , k∗M) and q∗ � (q∗1 , q∗2 ,
. . . , q∗M) follow a strict pattern. Assuming the vectors
are not identical, then there is an index, say c, where a
change occurs; for i ≤ c, we must have k∗i ≥ q∗i (with at
least one strict inequality); and for i > c, we must have
k∗i ≤ q∗i (with at least one strict inequality). The theo-
rem permits the possibility k∗ � (5, 2, 2, 0, 0) and q∗ �
(3, 3, 3, 0, 0), but not the possibility k∗ � (5, 2, 2, 0, 0) and
q∗ � (3, 3, 1, 1, 1). In the first case, the k∗i and q∗i have the
componentwise relationship (>, <, <,≤,≤), and thus
the change in inequalities occurs at c � 1. In the second
case, the componentwise relationship is (>, <, >, <, <),
and no change point c exists. One should think of the
index c as a turning point.

The structural relationship between q∗ and k∗ is
closely related to the concept of majorization. We say a
vector x ∈�
 majorizes (or dominates) a vector y ∈ �


(written x � y) provided (i) ∑l
i�1 x(i) ≥

∑l
i�1 y(i) for l �

1, 2, . . . ,M, where the notation z(i) refers to the ith
largest value in the vector z, and (ii) ∑M

i�1 xi �
∑M

i�1 yi .
The concept of majorization is weaker than the condi-
tion posed in Theorem 6. Consider our previous exam-
ple involving k∗ � (5, 2, 2, 0, 0) and q∗ � (3, 3, 1, 1, 1); it is
clear that k∗ � q∗ even though this pair does not satisfy
the relationship described by the theorem. The contrast
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between the two concepts can be sharpened by looking
at the difference in partial sums. Whereas majorization
requires that ∑l

i�1 x(i) −
∑l

i�1 y(i) ≥ 0 for l � 1, 2, . . . ,M,
the condition k∗i ≥ q∗i for i ≤ c and k∗i ≤ q∗i for i > c
requires that∑l

i�1 x(i)−
∑l

i�1 y(i) is nonnegative and non-
decreasing for l ≤ c and nonincreasing for l > c. If we
define a piecewise linear function g(l) whose value at
the integers is g(l)�∑l

i�1 x(i) −
∑l

i�1 y(i) (l � 1, 2, . . . ,M),
majorization requires g to be nonnegative, whereas
Theorem 6 requires g to be nonnegative and quasi-
concave with a maximum at the change point c. We
could find no reference in the literature to this stronger
form of majorization, which admits further generaliza-
tions (e.g., the condition x(i) − y(i) ≥ x(i+1) − y(i+1) would
make g(l) concave).We refer to the type ofmajorization
given in Theorem 6 as strong majorization.

Definition 1 (StrongMajorization). Wesay avector x∈�M

strongly majorizes a vector y∈�M and write x�s y pro-
vided:
1. ∑M

i�1 xi �
∑M

i�1 yi
2. For some index c < M, we have x(i) ≥ y(i) for i ≤ c

and y(i) ≥ x(i) for i > c.

In the language of strong majorization, Theorem 6
states that for any t ≥ n, we must have (k∗1 , k∗2 , . . . , k∗M)
�s (q∗1 , q∗2 , . . . , q∗M). Observe that this condition implies
the number of different alternatives included in the
optimal n-pack of the generalized model must be at
least as large as the number of different alternatives
included in the optimal n-pack of the canonical model.
We sought to generalize Theorem 6 by comparing

the optimal solutions to (13) between successive time
periods. In numerous numerical examples, we found
the optimal solution to the (t + 1) period problem
strongly majorized the optimal solution to the t period
problem. We conjecture that this is always the case.
However, we could not find an analytical proof for
this condition. Unlike Theorem 6, whose proof exploits
the simple optimality conditions (9) associated with
the canonical n-pack, the solution to the generalized
model is not characterized by simple optimality condi-
tions. Even the necessary conditions for local optimal-
ity, which are based on localized unit swaps, are very
complex.
Another property that was observed in all of our

numerical examples reflects how the value function
changes over time for a particular n-pack. Fortunately,
this property has an analytical proof (although ours is
surprisingly complicated). The condition t ≥ n + 1 is
used just as t ≥ n was used in the previous theorem; it
implies the number of terms included in the summa-
tion of (13) is independent of t (see also (14)).

Theorem 7 (Diminishing Marginal Value).Consider any
n-pack K � (k1 , k2 , . . . , kM) and any time period t ≥ n + 1.
Then Vt+1(K) −Vt(K) ≤ Vt(K) −Vt−1(K).

The property of diminishing marginal value makes
intuitive sense. Because the optimal value is based on
matching the product with the consumption occasion,
adding additional periods should not yield propor-
tional gains in value. Adding additional periods means
we are searching for better opportunities in the right-
hand tail of the error distribution, and better payoffs
should become increasingly difficult to obtain as time
increases. Dynamic models in revenue management
often require this type of structure, and so the property
is an important one if the model is to find additional
applications in this area.

5. Summary and Future Research
We have proposed a utility-maximizing model based
on consumers’ long-run consumption preferences to
estimate the value they can expect to receive from an
n-pack of substitutable products. Our canonical model
predicts that (i) strategic consumers will choose differ-
ent product alternatives in proportion to their avail-
able inventory and (ii) the total value consumers derive
from an n-pack increases in the pack’s utility param-
eters but decreases as the distribution of products
within the n-pack becomes more concentrated. This
result could explain the seemingly excessive variety
that has been observed in behavioral experiments on
n-pack selection for future consumption. Our general-
ized model demonstrates that the inclusion of an out-
side option (effectively reducing the consumption rate),
which to our knowledge has never been done, would
lead to even more variety in n-pack alternatives and
less concentration in n-pack quantities.
Our model assumes that both the consumption util-

ities Ui and the distribution of stochastic errors εi are
stationary, but thismight not always be the case. Allow-
ing for nonstationarity in consumption utilities (i.e.,
variety seeking, state dependence) or in the stochas-
tic error distribution (i.e., learning) might lead to new
results and insights. Ourmodel also assumes that there
is no discounting of future utilities, so temporal dis-
counting is another possible area for future research.
The direct approach, introducing a discount factor
on the expected “value-to-go” function, sacrifices the
virtue of a closed-form value function. However, it may
still be possible to analyze the value function implic-
itly or to introduce a different discount mechanism
that preserves the closed-form solution. Our model
also does not currently allow for any replenishment of
inventory by the consumer. Could replenishment be
included as yet another choice at each consumption
occasion? This would allow the consumer to obtain an
alternative they strongly prefer that is not currently
available in what remains of their n-pack. Is it possible
to obtain an optimal replenishment policy?
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There are also many ways to extend our analy-
sis to include various operational considerations. Per-
haps the most obvious extension is to assume that
the consumption utility parameters Ui are functions of
product attributes, such as price. Still another useful
extension would be to investigate how n-pack valua-
tion affects consumers’ willingness to pay. For example,
many retailers implicitly offer the option to purchase
an n-pack including only a single product alternative
at a low price per unit, or purchase single units of dif-
ferent product alternatives at a higher price per unit.
For example, a 6-pack of a single brand/type of beer
might cost $8.99 (≈$1.50/beer) while purchasing differ-
ent beers individually might cost $1.99/beer. Depend-
ing on the difference between consumers’ valuation of
their optimal n-pack and an n-pack with only their
favorite alternative, the retailer may be able to price a
“build your own 6-pack” option to extract additional
revenues while also increasing consumers’ utility. Pric-
ing n-packs and designing promotions that target indi-
vidual consumers are natural applications for this type
of model.
As noted in the introduction, there are some other

applications of ourmodel that would require very little
additional work. One such application involves auc-
tioning a set of n related products. In this case, the
utility parametersUi are replaced by the expectedmax-
imum bid price for alternative i, say Wi . Calculation
of the Wi might require a separate model to account
for the number of bidders and other factors. The price
actually bid for alternative i at auction would then be
modeled by Wi +εi , wherewe assume the Wi have been
normalized (rescaled) so that the error term εi has a
standard Gumbel distribution. A set of n related prod-
ucts having ki units of alternative i is then put up for
auction, and bidders submit individual bids for any or
all alternatives they are interested in. At the conclusion
of bidding, the maximum bid for alternative i, bi , is
noted, and the winning bid for a single unit of a sin-
gle alternative is revealed. The winning bid/alternative
would be determined by maxi(ln(ki) + ei) where ei �

bi−Wi . Observe this is the optimal policy in Theorem 1,
where now it serves to optimally match the product
with the auction. One unit of the winning alternative
is removed from the set, and the remaining set of n − 1
units is again put up for auction. After n such auctions,
all units would be sold. The expected revenue received
from this type of auction would be given by the value
function in Theorem 1, which exceeds the expected
revenue of selling each item in a series of individual
auctions. While there are potential model assumption
violations that would need to be addressed in prac-
tice (independence of the error terms, etc.), this type
of auction provides several interesting possibilities. For
example, because only one unit is sold at a time, bid-
ders can safely bid on a subset of products without

risking an excessive payout; the auction house would
not need to accept poor bids for a particular alternative
as long as there are better bidding results for another
alternative; in the earlier auction rounds, valuable bid-
ding data is obtained on all unsold alternatives.

We have treated the size of the n-pack as exogenous.
However, one could extend our model to include unit
price and/or a disutility term for storage, and the opti-
mization would then determine the appropriate pack
size along with the optimal pack. Given the simple
structure of the value function in the canonical model,
the optimization problem thus created might be rela-
tively straightforward to analyze.
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Endnotes
1Although the choice premium would appear to be fixed, whereas
the expected utilities Ui are subject to changes in scale and location,
this is not an issue. First, recall that the scale of the utilities has been
normalized to make the error terms standard Gumbel. Second, for
two n-packs (x1 , x2 , . . . , xM) and (y1 , y2 , . . . , yM), V(x1 , x2 , . . . , xM) −
V(y1 , y2 , . . . , yM) is independent of any shifts in location of the Ui .
Thus, when comparing two n-packs via the optimal expected util-
ity function V( · ), only differences in their respective (normalized)
utilities and differences in their choice premiums matter.
2Of the 27 outcomes, 18 include two different product alternatives
and 3 include only a single product alternative, 1, 2 or 3.
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